Your browser doesn't support javascript.
loading
Monitoring ICU Mortality Risk with A Long Short-Term Memory Recurrent Neural Network.
Yu, Ke; Zhang, Mingda; Cui, Tianyi; Hauskrecht, Milos.
Afiliación
  • Yu K; Intelligent Systems Program, University of Pittsburgh, USA, key44@pitt.edu.
Pac Symp Biocomput ; 25: 103-114, 2020.
Article en En | MEDLINE | ID: mdl-31797590
In intensive care units (ICU), mortality prediction is a critical factor not only for effective medical intervention but also for allocation of clinical resources. Structured electronic health records (EHR) contain valuable information for assessing mortality risk in ICU patients, but current mortality prediction models usually require laborious human-engineered features. Furthermore, substantial missing data in EHR is a common problem for both the construction and implementation of a prediction model.Inspired by language-related models, we design a new framework for dynamic monitoring of patients' mortality risk. Our framework uses the bag-of-words representation for all relevant medical events based on most recent history as inputs. By design, it is robust to missing data in EHR and can be easily implemented as an instant scoring system to monitor the medical development of all ICU patients. Specifically, our model uses latent semantic analysis (LSA) to encode the patients' states into low-dimensional embeddings, which are further fed to long short-term memory networks for mortality risk prediction. Our results show that the deep learning based framework performs better than the existing severity scoring system, SAPS-II. We observe that bidirectional long short-term memory demonstrates superior performance, probably due to the successful capture of both forward and backward temporal dependencies.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Contexto en salud: 1_ASSA2030 Problema de salud: 1_sistemas_informacao_saude Asunto principal: Biología Computacional / Memoria a Corto Plazo Tipo de estudio: Etiology_studies / Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Pac Symp Biocomput Asunto de la revista: BIOTECNOLOGIA / INFORMATICA MEDICA Año: 2020 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Contexto en salud: 1_ASSA2030 Problema de salud: 1_sistemas_informacao_saude Asunto principal: Biología Computacional / Memoria a Corto Plazo Tipo de estudio: Etiology_studies / Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Pac Symp Biocomput Asunto de la revista: BIOTECNOLOGIA / INFORMATICA MEDICA Año: 2020 Tipo del documento: Article
...