Your browser doesn't support javascript.
loading
Targeted chemical pressure yields tuneable millimetre-wave dielectric.
Dawley, Natalie M; Marksz, Eric J; Hagerstrom, Aaron M; Olsen, Gerhard H; Holtz, Megan E; Goian, Veronica; Kadlec, Christelle; Zhang, Jingshu; Lu, Xifeng; Drisko, Jasper A; Uecker, Reinhard; Ganschow, Steffen; Long, Christian J; Booth, James C; Kamba, Stanislav; Fennie, Craig J; Muller, David A; Orloff, Nathan D; Schlom, Darrell G.
Afiliación
  • Dawley NM; Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA.
  • Marksz EJ; Department of Materials Science and Engineering, University of Maryland, College Park, MD, USA.
  • Hagerstrom AM; National Institute of Standards and Technology, Boulder, CO, USA.
  • Olsen GH; National Institute of Standards and Technology, Boulder, CO, USA.
  • Holtz ME; School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA.
  • Goian V; Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA.
  • Kadlec C; School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA.
  • Zhang J; Institute of Physics ASCR, Prague, Czech Republic.
  • Lu X; Institute of Physics ASCR, Prague, Czech Republic.
  • Drisko JA; Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA.
  • Uecker R; National Institute of Standards and Technology, Boulder, CO, USA.
  • Ganschow S; National Institute of Standards and Technology, Boulder, CO, USA.
  • Long CJ; Leibniz-Institut für Kristallzüchtung, Berlin, Germany.
  • Booth JC; Leibniz-Institut für Kristallzüchtung, Berlin, Germany.
  • Kamba S; National Institute of Standards and Technology, Boulder, CO, USA.
  • Fennie CJ; National Institute of Standards and Technology, Boulder, CO, USA.
  • Muller DA; Institute of Physics ASCR, Prague, Czech Republic.
  • Orloff ND; School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA.
  • Schlom DG; School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA.
Nat Mater ; 19(2): 176-181, 2020 Feb.
Article en En | MEDLINE | ID: mdl-31873229
ABSTRACT
Epitaxial strain can unlock enhanced properties in oxide materials, but restricts substrate choice and maximum film thickness, above which lattice relaxation and property degradation occur. Here we employ a chemical alternative to epitaxial strain by providing targeted chemical pressure, distinct from random doping, to induce a ferroelectric instability with the strategic introduction of barium into today's best millimetre-wave tuneable dielectric, the epitaxially strained 50-nm-thick n = 6 (SrTiO3)nSrO Ruddlesden-Popper dielectric grown on (110) DyScO3. The defect mitigating nature of (SrTiO3)nSrO results in unprecedented low loss at frequencies up to 125 GHz. No barium-containing Ruddlesden-Popper titanates are known, but the resulting atomically engineered superlattice material, (SrTiO3)n-m(BaTiO3)mSrO, enables low-loss, tuneable dielectric properties to be achieved with lower epitaxial strain and a 200% improvement in the figure of merit at commercially relevant millimetre-wave frequencies. As tuneable dielectrics are key constituents of emerging millimetre-wave high-frequency devices in telecommunications, our findings could lead to higher performance adaptive and reconfigurable electronics at these frequencies.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nat Mater Asunto de la revista: CIENCIA / QUIMICA Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nat Mater Asunto de la revista: CIENCIA / QUIMICA Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos
...