Your browser doesn't support javascript.
loading
MicroRNA-195 Functions as a Tumor Suppressor by Directly Targeting Fatty Acid Synthase in Malignant Meningioma.
Song, Lai-Rong; Li, Da; Weng, Jian-Cong; Li, Cheng-Bei; Wang, Liang; Wu, Zhen; Zhang, Jun-Ting.
Afiliación
  • Song LR; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Department of Neuro-Oncology, China National Clinical Research Center for Neurological Diseases, Beijing, China; Department of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China; Departm
  • Li D; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Department of Neuro-Oncology, China National Clinical Research Center for Neurological Diseases, Beijing, China; Department of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China; Departm
  • Weng JC; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Department of Neuro-Oncology, China National Clinical Research Center for Neurological Diseases, Beijing, China; Department of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China; Departm
  • Li CB; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Department of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China; Department of Cancer Biology, Beijing Key Laboratory of Brain Tumor, Beijing, China.
  • Wang L; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Department of Neuro-Oncology, China National Clinical Research Center for Neurological Diseases, Beijing, China; Department of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China; Departm
  • Wu Z; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Department of Neuro-Oncology, China National Clinical Research Center for Neurological Diseases, Beijing, China; Department of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China; Departm
  • Zhang JT; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Department of Neuro-Oncology, China National Clinical Research Center for Neurological Diseases, Beijing, China; Department of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China; Departm
World Neurosurg ; 136: e355-e364, 2020 Apr.
Article en En | MEDLINE | ID: mdl-31927122
ABSTRACT

OBJECTIVE:

Meningiomas are among the most common primary intracranial tumors. Up to 20% of cases will show increased malignancy at histological examination (World Health Organization grade II or III). Effective pharmacotherapy, except for radiotherapy, is lacking. Therefore, it is necessary to study the pathogenesis of malignant meningioma to provide more treatment strategies.

METHODS:

RNA sequencing and micro-RNA (miRNA) microarray detection were applied to identify differentially expressed messenger RNAs (mRNAs) and miRNAs in benign and malignant meningioma. The miRDB and TargetScan databases were used to predict the potential interaction between miRNAs and mRNAs. A proliferation assay was used to evaluate the cell growth. A wound healing assay and Transwell assay were performed to assess the cell migration and invasion abilities, respectively. The interaction between miRNA and mRNA was identified using a luciferase reporter assay.

RESULTS:

We found fatty acid synthase (FASN) was significantly upregulated in malignant meningioma compared with benign meningioma. Knockdown of FASN significantly inhibited proliferation, migration, and invasion of IOMM-Lee cells. Moreover, miR-195 was verified to directly target FASN using a luciferase reporter assay. Upregulation of miR-195 also significantly inhibited proliferation, migration, and invasion of IOMM-Lee cells. Furthermore, we performed bioinformatics analysis to predict the competing endogenous RNAs (ceRNAs) and found that NUP210, SPIRE2, SLC7A1, and DMTN might function as ceRNAs of FASN by sponging miR-195 in meningioma.

CONCLUSIONS:

Our results have suggested a tumor suppressive role for miR-195 in the tumorigenesis and progression of malignant meningioma by targeting FASN. In addition, NUP210, SPIRE2, SLC7A1, and DMTN might act as ceRNAs to regulate FASN expression by sponging miR-195.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Contexto en salud: 2_ODS3 Problema de salud: 2_cobertura_universal Asunto principal: Regulación Neoplásica de la Expresión Génica / MicroARNs / Acido Graso Sintasa Tipo I / Neoplasias Meníngeas / Meningioma Límite: Humans Idioma: En Revista: World Neurosurg Asunto de la revista: NEUROCIRURGIA Año: 2020 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Contexto en salud: 2_ODS3 Problema de salud: 2_cobertura_universal Asunto principal: Regulación Neoplásica de la Expresión Génica / MicroARNs / Acido Graso Sintasa Tipo I / Neoplasias Meníngeas / Meningioma Límite: Humans Idioma: En Revista: World Neurosurg Asunto de la revista: NEUROCIRURGIA Año: 2020 Tipo del documento: Article
...