Your browser doesn't support javascript.
loading
Genome-wide DNA methylation and transcriptome changes in Mycobacterium tuberculosis with rifampicin and isoniazid resistance.
Chen, Liang; Li, Haicheng; Chen, Tao; Yu, Li; Guo, Huixin; Chen, Yuhui; Chen, Mu; Li, Zhenyan; Wu, Zhuhua; Wang, Xuezhi; Zhao, Jiao; Yan, Huimin; Wang, Xinchun; Zhou, Lin; Zhou, Jie.
Afiliación
  • Chen L; Centre for Tuberculosis Control of Guangdong Province Guangzhou, China.
  • Li H; Reference Laboratory, Centre for Tuberculosis Control of Guangdong Province Guangzhou, China.
  • Chen T; Reference Laboratory, Centre for Tuberculosis Control of Guangdong Province Guangzhou, China.
  • Yu L; Reference Laboratory, Centre for Tuberculosis Control of Guangdong Province Guangzhou, China.
  • Guo H; Reference Laboratory, Centre for Tuberculosis Control of Guangdong Province Guangzhou, China.
  • Chen Y; Outpatient Office, Centre for Tuberculosis Control of Guangdong Province Guangzhou, China.
  • Chen M; Department of Respiration, The Sixth Affiliated Hospital of SUN YAT-SEN University Guangzhou 510655, China.
  • Li Z; Reference Laboratory, Centre for Tuberculosis Control of Guangdong Province Guangzhou, China.
  • Wu Z; Reference Laboratory, Centre for Tuberculosis Control of Guangdong Province Guangzhou, China.
  • Wang X; Reference Laboratory, Centre for Tuberculosis Control of Guangdong Province Guangzhou, China.
  • Zhao J; Medical College of Jinan University Guangzhou, China.
  • Yan H; Guangdong Medical University Dongguan, China.
  • Wang X; Reference Laboratory, Centre for Tuberculosis Control of Guangdong Province Guangzhou, China.
  • Zhou L; Centre for Tuberculosis Control of Guangdong Province Guangzhou, China.
  • Zhou J; The Forth People's Hospital of Foshan Foshan, China.
Int J Clin Exp Pathol ; 11(6): 3036-3045, 2018.
Article en En | MEDLINE | ID: mdl-31938429
ABSTRACT
We investigated the genome-wide DNA methylation and transcriptome changes in M. tuberculosis with rifampicin or isoniazid resistance. Single-molecule real-time (SMRT) sequencing and microarray technology were performed to expound DNA methylation profiles and differentially expressed genes in rifampicin or isoniazid resistant M. tuberculosis. Kyoto Encyclopedia of Genes and Genomes (KEGG) biological pathway analysis and methylated regulatory network analysis were conducted by online forecasting databases. Integrated analysis of DNA methylation and transcriptome revealed that 335 differentially methylated genes (175 hypermethylated and 160 hypomethylated) and 132 significant differentially expressed genes (68 up-regulated and 63 down-regulated) were found to be regulated by both rifampicin and isoniazid in M. tuberculosis H37Rv. Correlation analysis showed that differential methylated genes were negatively correlated with their transcriptional levels in rifampicin or isoniazid resistant strains. KEGG pathway analysis indicated that nitrogen metabolism pathway is closely related to differentially methylated genes induced by rifampicin and isoniazid. KEGG also suggested that differentially expressed genes in rifampicin or isoniazid-resistant strains may play different roles in regulating signal transduction events. Furthermore, five differentially methylated candidate genes (Rv0840c, Rv2243, Rv0644c, Rv2386c and Rv1130) in rifampicin resistant strains and three genes (Rv0405, Rv0252 and Rv0908) in isoniazid-resistant strains were verified the existence of protein-protein interaction in STRING database. Integrated DNA methylation and transcriptome analyses provide an epigenetic overview of rifampicin and isoniazid-induced antibiotic resistance in M. tuberculosis H37Rv. Several interesting genes and regulatory pathways may provide valuable resources for epigenetic studies in M. tuberculosis antibiotic resistance.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Contexto en salud: 3_ND Problema de salud: 3_neglected_diseases / 3_tuberculosis Idioma: En Revista: Int J Clin Exp Pathol Asunto de la revista: PATOLOGIA Año: 2018 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Contexto en salud: 3_ND Problema de salud: 3_neglected_diseases / 3_tuberculosis Idioma: En Revista: Int J Clin Exp Pathol Asunto de la revista: PATOLOGIA Año: 2018 Tipo del documento: Article País de afiliación: China
...