Your browser doesn't support javascript.
loading
A conductive cell-delivery construct as a bioengineered patch that can improve electrical propagation and synchronize cardiomyocyte contraction for heart repair.
Chen, Shanglin; Hsieh, Meng-Hsuan; Li, Shu-Hong; Wu, Jun; Weisel, Richard D; Chang, Yen; Sung, Hsing-Wen; Li, Ren-Ke.
Afiliación
  • Chen S; Department of Cardiac Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Toronto General Hospital Research Institute, Division of Cardiovascular Surgery, University Health Network, Toronto, Canad
  • Hsieh MH; Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan, ROC.
  • Li SH; Toronto General Hospital Research Institute, Division of Cardiovascular Surgery, University Health Network, Toronto, Canada.
  • Wu J; Toronto General Hospital Research Institute, Division of Cardiovascular Surgery, University Health Network, Toronto, Canada.
  • Weisel RD; Toronto General Hospital Research Institute, Division of Cardiovascular Surgery, University Health Network, Toronto, Canada; Division of Cardiac Surgery, Department of Surgery, University of Toronto, Toronto, Canada.
  • Chang Y; Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation and School of Medicine, Tzu Chi University, Hualien, Taiwan, ROC.
  • Sung HW; Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan, ROC. Electronic address: hwsung@mx.nthu.edu.tw.
  • Li RK; Toronto General Hospital Research Institute, Division of Cardiovascular Surgery, University Health Network, Toronto, Canada; Division of Cardiac Surgery, Department of Surgery, University of Toronto, Toronto, Canada. Electronic address: renkeli@uhnresearch.ca.
J Control Release ; 320: 73-82, 2020 04 10.
Article en En | MEDLINE | ID: mdl-31958479
ABSTRACT
Cardiac tissue engineering is of particular importance in the combination of contracting cells with a biomaterial scaffold, which serves as a cell-delivery construct, to replace cardiomyocytes (CMs) that are lost as a result of an infarction, to restore heart function. However, most biomaterial scaffolds are nonconductive and may delay regional conduction, potentially causing arrhythmias. In this study, a conductive CM-delivery construct that consists of a gelatin-based gelfoam that is conjugated with a self-doped conductive polymer (poly-3-amino-4-methoxybenzoic acid, PAMB) is proposed as a cardiac patch (PAMB-Gel patch) to repair an infarcted heart. A nonconductive plain gelfoam (Gel patch) is used as a control. The electrical conductivity of the PAMB-Gel patch is approximately 30 times higher than that of the Gel patch; as a result, the conductive PAMB-Gel patch can substantially increase electrical conduction between distinct clusters of beating CMs, facilitating their synchronous contraction. In vivo epicardial implantation of the PAMB-Gel patch that is seeded with CMs (the bioengineered patch) in infarcted rat hearts can significantly enhance electrical activity in the fibrotic tissue, improving electrical impulse propagation and synchronizing CM contraction across the scar region, markedly reducing its susceptibility to cardiac arrhythmias. Echocardiography shows that the bioengineered conductive patch has an important role in the restoration of cardiac function, perhaps owing to the synergistic effects of its conductive construct and the synchronously beating CMs. These experimental results reveal that the as-proposed bioengineered conductive patch has great potential for repairing injured cardiac tissues.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Miocitos Cardíacos / Infarto del Miocardio Límite: Animals Idioma: En Revista: J Control Release Asunto de la revista: FARMACOLOGIA Año: 2020 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Miocitos Cardíacos / Infarto del Miocardio Límite: Animals Idioma: En Revista: J Control Release Asunto de la revista: FARMACOLOGIA Año: 2020 Tipo del documento: Article
...