Your browser doesn't support javascript.
loading
Optical trapping reveals differences in dielectric and optical properties of copper nanoparticles compared to their oxides and ferrites.
Purohit, Pablo; Samadi, Akbar; Bendix, Poul Martin; Laserna, J Javier; Oddershede, Lene B.
Afiliación
  • Purohit P; Universidad de Málaga, Departamento de Química Analítica, Campus de Teatinos s/n, 29071, Málaga, Spain.
  • Samadi A; Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100, Copenhagen, Denmark.
  • Bendix PM; Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100, Copenhagen, Denmark.
  • Laserna JJ; Universidad de Málaga, Departamento de Química Analítica, Campus de Teatinos s/n, 29071, Málaga, Spain.
  • Oddershede LB; Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100, Copenhagen, Denmark. oddershede@nbi.ku.dk.
Sci Rep ; 10(1): 1198, 2020 Jan 27.
Article en En | MEDLINE | ID: mdl-31988351
ABSTRACT
In a nanoplasmonic context, copper (Cu) is a potential and interesting surrogate to less accessible metals such as gold, silver or platinum. We demonstrate optical trapping of individual Cu nanoparticles with diameters between 25 and 70 nm and of two ionic Cu nanoparticle species, CuFe2O4 and CuZnFe2O4, with diameters of 90 nm using a near infrared laser and quantify their interaction with the electromagnetic field experimentally and theoretically. We find that, despite the similarity in size, the trapping stiffness and polarizability of the ferrites are significantly lower than those of Cu nanoparticles, thus inferring a different light-particle interaction. One challenge with using Cu nanoparticles in practice is that upon exposure to the normal atmosphere, Cu is spontaneously passivated by an oxide layer, thus altering its physicochemical properties. We theoretically investigate how the presence of an oxide layer influences the optical properties of Cu nanoparticles. Comparisons to experimental observations infer that oxidation of CuNPs is minimal during optical trapping. By finite element modelling we map out the expected temperature increase of the plasmonic Cu nanoparticles during optical trapping and retrieve temperature increases high enough to change the catalytic properties of the particles.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Sci Rep Año: 2020 Tipo del documento: Article País de afiliación: España

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Sci Rep Año: 2020 Tipo del documento: Article País de afiliación: España
...