Your browser doesn't support javascript.
loading
Measurement of the ν µ energy spectrum with IceCube-79: IceCube Collaboration.
Aartsen, M G; Ackermann, M; Adams, J; Aguilar, J A; Ahlers, M; Ahrens, M; Al Samarai, I; Altmann, D; Andeen, K; Anderson, T; Ansseau, I; Anton, G; Archinger, M; Argüelles, C; Auffenberg, J; Axani, S; Bagherpour, H; Bai, X; Barwick, S W; Baum, V; Bay, R; Beatty, J J; Becker Tjus, J; Becker, K-H; BenZvi, S; Berley, D; Bernardini, E; Besson, D Z; Binder, G; Bindig, D; Blaufuss, E; Blot, S; Bohm, C; Börner, M; Bos, F; Bose, D; Böser, S; Botner, O; Bradascio, F; Braun, J; Brayeur, L; Bretz, H-P; Bron, S; Burgman, A; Carver, T; Casier, M; Cheung, E; Chirkin, D; Christov, A; Clark, K.
Afiliación
  • Aartsen MG; 2Department of Physics, University of Adelaide, Adelaide, 5005 Australia.
  • Ackermann M; 52DESY, 15735 Zeuthen, Germany.
  • Adams J; 16Department of Physics and Astronomy, University of Canterbury, Private Bag 4800, Christchurch, New Zealand.
  • Aguilar JA; 12Science Faculty CP230, Université Libre de Bruxelles, 1050 Brussels, Belgium.
  • Ahlers M; 30Department of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin, Madison, WI 53706 USA.
  • Ahrens M; 42Department of Physics, Oskar Klein Centre, Stockholm University, 10691 Stockholm, Sweden.
  • Al Samarai I; 25Département de physique nucléaire et corpusculaire, Université de Genève, 1211 Geneva, Switzerland.
  • Altmann D; 24Erlangen Centre for Astroparticle Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany.
  • Andeen K; 32Department of Physics, Marquette University, Milwaukee, WI 53201 USA.
  • Anderson T; 48Department of Physics, Pennsylvania State University, University Park, PA 16802 USA.
  • Ansseau I; 12Science Faculty CP230, Université Libre de Bruxelles, 1050 Brussels, Belgium.
  • Anton G; 24Erlangen Centre for Astroparticle Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany.
  • Archinger M; 31Institute of Physics, University of Mainz, Staudinger Weg 7, 55099 Mainz, Germany.
  • Argüelles C; 14Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 USA.
  • Auffenberg J; 1III. Physikalisches Institut, RWTH Aachen University, 52056 Aachen, Germany.
  • Axani S; 14Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 USA.
  • Bagherpour H; 16Department of Physics and Astronomy, University of Canterbury, Private Bag 4800, Christchurch, New Zealand.
  • Bai X; 40Physics Department, South Dakota School of Mines and Technology, Rapid City, SD 57701 USA.
  • Barwick SW; 27Department of Physics and Astronomy, University of California, Irvine, CA 92697 USA.
  • Baum V; 31Institute of Physics, University of Mainz, Staudinger Weg 7, 55099 Mainz, Germany.
  • Bay R; 7Department of Physics, University of California, Berkeley, CA 94720 USA.
  • Beatty JJ; 18Department of Physics and Center for Cosmology and Astro-Particle Physics, Ohio State University, Columbus, OH 43210 USA.
  • Becker Tjus J; 19Department of Astronomy, Ohio State University, Columbus, OH 43210 USA.
  • Becker KH; 10Fakultät für Physik and Astronomie, Ruhr-Universität Bochum, 44780 Bochum, Germany.
  • BenZvi S; 51Department of Physics, University of Wuppertal, 42119 Wuppertal, Germany.
  • Berley D; 49Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 USA.
  • Bernardini E; 17Department of Physics, University of Maryland, College Park, MD 20742 USA.
  • Besson DZ; 52DESY, 15735 Zeuthen, Germany.
  • Binder G; 28Department of Physics and Astronomy, University of Kansas, Lawrence, KS 66045 USA.
  • Bindig D; 7Department of Physics, University of California, Berkeley, CA 94720 USA.
  • Blaufuss E; 8Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA.
  • Blot S; 51Department of Physics, University of Wuppertal, 42119 Wuppertal, Germany.
  • Bohm C; 17Department of Physics, University of Maryland, College Park, MD 20742 USA.
  • Börner M; 52DESY, 15735 Zeuthen, Germany.
  • Bos F; 42Department of Physics, Oskar Klein Centre, Stockholm University, 10691 Stockholm, Sweden.
  • Bose D; 21Department of Physics, TU Dortmund University, 44221 Dortmund, Germany.
  • Böser S; 10Fakultät für Physik and Astronomie, Ruhr-Universität Bochum, 44780 Bochum, Germany.
  • Botner O; 44Department of Physics, Sungkyunkwan University, Suwon, 440-746 Korea.
  • Bradascio F; 31Institute of Physics, University of Mainz, Staudinger Weg 7, 55099 Mainz, Germany.
  • Braun J; 50Department of Physics and Astronomy, Uppsala University, Box 516, 75120 Uppsala, Sweden.
  • Brayeur L; 52DESY, 15735 Zeuthen, Germany.
  • Bretz HP; 30Department of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin, Madison, WI 53706 USA.
  • Bron S; 13Dienst ELEM, Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium.
  • Burgman A; 52DESY, 15735 Zeuthen, Germany.
  • Carver T; 25Département de physique nucléaire et corpusculaire, Université de Genève, 1211 Geneva, Switzerland.
  • Casier M; 50Department of Physics and Astronomy, Uppsala University, Box 516, 75120 Uppsala, Sweden.
  • Cheung E; 25Département de physique nucléaire et corpusculaire, Université de Genève, 1211 Geneva, Switzerland.
  • Chirkin D; 13Dienst ELEM, Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium.
  • Christov A; 17Department of Physics, University of Maryland, College Park, MD 20742 USA.
  • Clark K; 30Department of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin, Madison, WI 53706 USA.
Eur Phys J C Part Fields ; 77(10): 692, 2017.
Article en En | MEDLINE | ID: mdl-31997925
ABSTRACT
IceCube is a neutrino observatory deployed in the glacial ice at the geographic South Pole. The ν µ energy unfolding described in this paper is based on data taken with IceCube in its 79-string configuration. A sample of muon neutrino charged-current interactions with a purity of 99.5% was selected by means of a multivariate classification process based on machine learning. The subsequent unfolding was performed using the software Truee. The resulting spectrum covers an E ν -range of more than four orders of magnitude from 125 GeV to 3.2 PeV. Compared to the Honda atmospheric neutrino flux model, the energy spectrum shows an excess of more than 1.9 σ in four adjacent bins for neutrino energies E ν ≥ 177.8 TeV . The obtained spectrum is fully compatible with previous measurements of the atmospheric neutrino flux and recent IceCube measurements of a flux of high-energy astrophysical neutrinos.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Eur Phys J C Part Fields Año: 2017 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Eur Phys J C Part Fields Año: 2017 Tipo del documento: Article
...