Your browser doesn't support javascript.
loading
Understanding and modelling the interactions of peptides with membranes: from partitioning to self-assembly.
Chen, Charles H; Melo, Marcelo Cr; Berglund, Nils; Khan, Ayesha; de la Fuente-Nunez, Cesar; Ulmschneider, Jakob P; Ulmschneider, Martin B.
Afiliación
  • Chen CH; Department of Chemistry, King's College London, London, UK.
  • Melo MC; Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, Penn Institute for Computational Science, and Department of Bioengineering, University of Pennsylvania, Philade
  • Berglund N; Department of Chemistry, Aarhus University, Aarhus, Denmark.
  • Khan A; College of Medicine and Health, University of Exeter, Exeter, UK.
  • de la Fuente-Nunez C; Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, Penn Institute for Computational Science, and Department of Bioengineering, University of Pennsylvania, Philade
  • Ulmschneider JP; Institute of Natural Sciences and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China. Electronic address: jakob@sjtu.edu.cn.
  • Ulmschneider MB; Department of Chemistry, King's College London, London, UK. Electronic address: martin.ulmschneider@kcl.ac.uk.
Curr Opin Struct Biol ; 61: 160-166, 2020 04.
Article en En | MEDLINE | ID: mdl-32006812
ABSTRACT
Atomic detail simulations are starting to reveal how flexible polypeptides interact with fluid lipid bilayers. These insights are transforming our understanding of one of the fundamental processes in biology membrane protein folding and assembly. Advanced molecular dynamics (MD) simulation techniques enable accurate prediction of protein structure, folding pathways and assembly in microsecond-timescales. Such simulations show how membrane-active peptides self-assemble in cell membranes, revealing their binding, folding, insertion, and aggregation, while at the same time providing atomic resolution details of peptide-lipid interactions. Essential to the impact of simulations are experimental approaches that enable calibration and validation of the computational models and techniques. In this review, we summarize the current development of applying unbiased atomic detail MD simulations and the relation to experimental techniques, to study peptide folding and provide our perspective of the field.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Péptidos / Conformación Proteica / Membrana Celular / Simulación de Dinámica Molecular / Simulación del Acoplamiento Molecular Tipo de estudio: Prognostic_studies Idioma: En Revista: Curr Opin Struct Biol Asunto de la revista: BIOLOGIA MOLECULAR Año: 2020 Tipo del documento: Article País de afiliación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Péptidos / Conformación Proteica / Membrana Celular / Simulación de Dinámica Molecular / Simulación del Acoplamiento Molecular Tipo de estudio: Prognostic_studies Idioma: En Revista: Curr Opin Struct Biol Asunto de la revista: BIOLOGIA MOLECULAR Año: 2020 Tipo del documento: Article País de afiliación: Reino Unido
...