Context-free hyperspectral image enhancement for wide-field optical biomarker visualization.
Biomed Opt Express
; 11(1): 133-148, 2020 Jan 01.
Article
en En
| MEDLINE
| ID: mdl-32010505
Many well-known algorithms for the color enhancement of hyperspectral measurements in biomedical imaging are based on statistical assumptions that vary greatly with respect to the proportions of different pixels that appear in a given image, and thus may thwart their application in a surgical environment. This article attempts to explain why this occurs with SVD-based enhancement methods, and proposes the separation of spectral enhancement from analysis. The resulting method, termed affinity-based color enhancement, or ACE for short, achieves multi- and hyperspectral image coloring and contrast based on current spectral affinity metrics that can physically relate spectral data to a particular biomarker. This produces tunable, real-time results which are analogous to the current state-of-the-art algorithms, without suffering any of their inherent context-dependent limitations. Two applications of this method are shown as application examples: vein contrast enhancement and high-precision chromophore concentration estimation.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
Biomed Opt Express
Año:
2020
Tipo del documento:
Article
País de afiliación:
España