Your browser doesn't support javascript.
loading
Model-based correction algorithm for Fourier Transform infrared microscopy measurements of complex tissue-substrate systems.
Surowka, Artur Dawid; Birarda, Giovanni; Szczerbowska-Boruchowska, Magdalena; Cestelli-Guidi, Mariangela; Ziomber-Lisiak, Agata; Vaccari, Lisa.
Afiliación
  • Surowka AD; Elettra-Sincrotrone Trieste, Strada Statale 14 - km 163.5, 34149, Basovizza, Trieste, Italy; AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, al. Mickiewicza 30, 30-059, Kraków, Poland. Electronic address: asurowka@agh.edu.pl.
  • Birarda G; Elettra-Sincrotrone Trieste, Strada Statale 14 - km 163.5, 34149, Basovizza, Trieste, Italy.
  • Szczerbowska-Boruchowska M; AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, al. Mickiewicza 30, 30-059, Kraków, Poland.
  • Cestelli-Guidi M; INFN - Laboratori Nazionali di Frascati, Via E. Fermi 40, I-00044, Frascati, Rome, Italy.
  • Ziomber-Lisiak A; Chair of Pathophysiology, Faculty of Medicine, Jagiellonian University, ul. Czysta 18, 31-121, Kraków, Poland.
  • Vaccari L; Elettra-Sincrotrone Trieste, Strada Statale 14 - km 163.5, 34149, Basovizza, Trieste, Italy.
Anal Chim Acta ; 1103: 143-155, 2020 Mar 22.
Article en En | MEDLINE | ID: mdl-32081179
ABSTRACT
Model-based algorithms have recently attracted much attention for data pre-processing in tissue mapping and imaging by Fourier transform infrared micro-spectroscopy (FTIR). Their versatility, robustness and computational performance enabled the improvement of spectral quality by mitigating the impact of scattering and fringing in FTIR spectra of chemically homogeneous biological systems. However, to date, no comprehensive algorithm has been optimized and automated for large-area FTIR imaging of histologically complex tissue samples. Herein, for the first time, we propose a unique, integrated and fully-automated Multiple Linear Regression Multi-Reference (MLR-MR) method for correcting linear baseline effects due to diffuse scattering, for compensating substrate thickness inhomogeneity and accounting for sample chemical heterogeneity in FTIR images. In particular, the algorithm uses multiple-reference spectra for histologically heterogeneous biological samples. The performance of the procedure was demonstrated for FTIR imaging of chemically complex rat brain frontal cortex tissue samples, mounted onto Ultralene® films. The proposed MLR-MR correction algorithm allows the efficient retrieval of "pure" absorbance spectra and greatly improves the histological fidelity of FTIR imaging data, as compared with the one-reference approach. In addition, the MLR-MR algorithm here presented opens up the possibility for extracting information on substrate thickness variability, thus enabling the indirect evaluation of its topography. As a whole, the MLR-MR procedure can be easily extended to more complex systems for which Mie scattering effects must also be eliminated.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Algoritmos / Corteza Cerebral / Espectroscopía Infrarroja por Transformada de Fourier / Microscopía Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Anal Chim Acta Año: 2020 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Algoritmos / Corteza Cerebral / Espectroscopía Infrarroja por Transformada de Fourier / Microscopía Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Anal Chim Acta Año: 2020 Tipo del documento: Article
...