Your browser doesn't support javascript.
loading
Molecular docking and molecular dynamics simulations of a mutant Acinetobacter haemolyticus alkaline-stable lipase against tributyrin.
Anuar, Nurul Fatin Syamimi Khairul; Wahab, Roswanira Abdul; Huyop, Fahrul; Amran, Syazwani Itri; Hamid, Azzmer Azzar Abdul; Halim, Khairul Bariyyah Abd; Hood, Mohammad Hakim Mohammad.
Afiliación
  • Anuar NFSK; Faculty of Science, Department of Bioscience, Universiti Teknologi Malaysia, Johor, Malaysia.
  • Wahab RA; Faculty of Science, Department of Chemistry, Enzyme Technology and Green Synthesis Research Group, Universiti Teknologi Malaysia, Johor, Malaysia.
  • Huyop F; Faculty of Science, Department of Chemistry, Universiti Teknologi Malaysia, Johor, Malaysia.
  • Amran SI; Faculty of Science, Department of Chemistry, Enzyme Technology and Green Synthesis Research Group, Universiti Teknologi Malaysia, Johor, Malaysia.
  • Hamid AAA; Faculty of Science, Department of Bioscience, Universiti Teknologi Malaysia, Johor, Malaysia.
  • Halim KBA; Faculty of Science, Department of Chemistry, Enzyme Technology and Green Synthesis Research Group, Universiti Teknologi Malaysia, Johor, Malaysia.
  • Hood MHM; Faculty of Science, Department of Bioscience, Universiti Teknologi Malaysia, Johor, Malaysia.
J Biomol Struct Dyn ; 39(6): 2079-2091, 2021 Apr.
Article en En | MEDLINE | ID: mdl-32174260
ABSTRACT
We previously reported on a mutant lipase KV1 (Mut-LipKV1) from Acinetobacter haemolyticus which optimal pH was raised from 8.0 to 11.0 after triple substitutions of surface aspartic acid (Asp) with lysine (Lys). Herein, this study further examined the Mut-LipKV1 by molecular docking, molecular dynamics (MD) simulations and molecular mechanics-Poisson Boltzmann surface area (MM-PBSA) calculations to explore the structural requirements that participated in the effective binding of tributyrin and its catalytic triad (Ser165, Asp259 and His289) and identify detailed changes that occurred post mutation. Mut-LipKV1 bound favorably with tributyrin (-4.1 kcal/mol) and formed a single hydrogen bond with His289, at pH 9.0. Despite the incongruent docking analysis data, results of MD simulations showed configurations of both the tributyrin-Mut-LipKV1 (RMSD 0.3 nm; RMSF 0.05 - 0.3 nm) and the tributyrin-wildtype lipase KV1 (tributyrin-LipKV1) complexes (RMSD 0.35 nm; RMSF 0.05 - 0.4 nm) being comparably stable at pH 8.0. MM-PBSA analysis indicated that van der Waals interactions made the most contribution during the molecular binding process, with the Mut-LipKV1-tributyrin complex (-44.04 kcal/mol) showing relatively lower binding energy than LipKV1-tributyrin (-43.83 kcal/mol), at pH 12.0. All tributyrin-Mut-LipKV1 complexes displayed improved binding free energies over a broader pH range from 8.0 - 12.0, as compared to LipKV1-tributyrin. Future empirical works are thus, important to validate the improved alkaline-stability of Mut-LipKV1. In a nutshell, our research offered a considerable insight for further improving the alkaline tolerance of lipases.Communicated by Ramaswamy H. Sarma.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Simulación de Dinámica Molecular / Lipasa Idioma: En Revista: J Biomol Struct Dyn Año: 2021 Tipo del documento: Article País de afiliación: Malasia

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Simulación de Dinámica Molecular / Lipasa Idioma: En Revista: J Biomol Struct Dyn Año: 2021 Tipo del documento: Article País de afiliación: Malasia
...