Your browser doesn't support javascript.
loading
Hemodynamic assessment of diastolic function for experimental models.
Ogilvie, Leslie M; Edgett, Brittany A; Huber, Jason S; Platt, Mathew J; Eberl, Hermann J; Lutchmedial, Sohrab; Brunt, Keith R; Simpson, Jeremy A.
Afiliación
  • Ogilvie LM; Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada.
  • Edgett BA; IMPART Investigator Team Canada, Saint John, New Brunswick, Canada.
  • Huber JS; Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada.
  • Platt MJ; Department of Pharmacology, Dalhousie Medicine New Brunswick, Saint John, New Brunswick, Canada.
  • Eberl HJ; IMPART Investigator Team Canada, Saint John, New Brunswick, Canada.
  • Lutchmedial S; Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada.
  • Brunt KR; Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada.
  • Simpson JA; Department of Mathematics and Statistics, University of Guelph, Guelph, Ontario, Canada.
Am J Physiol Heart Circ Physiol ; 318(5): H1139-H1158, 2020 05 01.
Article en En | MEDLINE | ID: mdl-32216614
ABSTRACT
Traditionally, the evaluation of cardiac function has focused on systolic function; however, there is a growing appreciation for the contribution of diastolic function to overall cardiac health. Given the emerging interest in evaluating diastolic function in all models of heart failure, there is a need for sensitivity, accuracy, and precision in the hemodynamic assessment of diastolic function. Hemodynamics measure cardiac pressures in vivo, offering a direct assessment of diastolic function. In this review, we summarize the underlying principles of diastolic function, dividing diastole into two phases 1) relaxation and 2) filling. We identify parameters used to comprehensively evaluate diastolic function by hemodynamics, clarify how each parameter is obtained, and consider the advantages and limitations associated with each measure. We provide a summary of the sensitivity of each diastolic parameter to loading conditions. Furthermore, we discuss differences that can occur in the accuracy of diastolic and systolic indices when generated by automated software compared with custom software analysis and the magnitude each parameter is influenced during inspiration with healthy breathing and a mild breathing load, commonly expected in heart failure. Finally, we identify key variables to control (e.g., body temperature, anesthetic, sampling rate) when collecting hemodynamic data. This review provides fundamental knowledge for users to succeed in troubleshooting and guidelines for evaluating diastolic function by hemodynamics in experimental models of heart failure.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Presión Sanguínea / Función Ventricular / Guías de Práctica Clínica como Asunto / Modelos Animales de Enfermedad / Insuficiencia Cardíaca Tipo de estudio: Guideline / Prognostic_studies Límite: Animals Idioma: En Revista: Am J Physiol Heart Circ Physiol Asunto de la revista: CARDIOLOGIA / FISIOLOGIA Año: 2020 Tipo del documento: Article País de afiliación: Canadá

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Presión Sanguínea / Función Ventricular / Guías de Práctica Clínica como Asunto / Modelos Animales de Enfermedad / Insuficiencia Cardíaca Tipo de estudio: Guideline / Prognostic_studies Límite: Animals Idioma: En Revista: Am J Physiol Heart Circ Physiol Asunto de la revista: CARDIOLOGIA / FISIOLOGIA Año: 2020 Tipo del documento: Article País de afiliación: Canadá
...