Your browser doesn't support javascript.
loading
What do we know about the role of lipoprotein(a) in atherogenesis 57 years after its discovery?
Cybulska, Barbara; Klosiewicz-Latoszek, Longina; Penson, Peter E; Banach, Maciej.
Afiliación
  • Cybulska B; National Institute of Public Health - National Institute of Hygiene, Warsaw, Poland.
  • Klosiewicz-Latoszek L; National Institute of Public Health - National Institute of Hygiene, Warsaw, Poland.
  • Penson PE; School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK; Liverpool Centre For Cardiovascular Science, Liverpool, UK; University of Liverpool, Liverpool, UK.
  • Banach M; Department of Hypertension, WAM University Hospital, Lodz, Medical University, Lodz, Poland; Polish Mothers Memorial Hospital Research Institute (PMMHRI), Lodz, Poland. Electronic address: maciejbanach77@gmail.com.
Prog Cardiovasc Dis ; 63(3): 219-227, 2020.
Article en En | MEDLINE | ID: mdl-32277995
Elevated circulating concentrations of lipoprotein(a) [Lp(a)] is strongly associated with increased risk of atherosclerotic cardiovascular disease (CVD) and degenerative aortic stenosis. This relationship was first observed in prospective observational studies, and the causal relationship was confirmed in genetic studies. Everybody should have their Lp(a) concentration measured once in their lifetime. CVD risk is elevated when Lp(a) concentrations are high i.e. > 50 mg/dL (≥100 mmol/L). Extremely high Lp(a) levels >180 mg/dL (≥430 mmol/L) are associated with CVD risk similar to that conferred by familial hypercholesterolemia. Elevated Lp(a) level was previously treated with niacin, which exerts a potent Lp(a)-lowering effect. However, niacin is currently not recommended because, despite the improvement in lipid profile, no improvements on clinical outcomes have been observed. Furthermore, niacin use has been associated with severe adverse effects. Post hoc analyses of clinical trials with proprotein convertase subtilisin/kexin type-9 (PCSK9) inhibitors have shown that these drugs exert clinical benefits by lowering Lp(a), independent of their potent reduction of low-density lipoprotein cholesterol (LDL-C). It is not yet known whether PCSK9 inhibitors will be of clinical use in patients with elevated Lp(a). Apheresis is a very effective approach to Lp(a) reduction, which reduces CVD risk but is invasive and time-consuming and is thus reserved for patients with very high Lp(a) levels and progressive CVD. Studies are ongoing on the practical application of genetic approaches to therapy, including antisense oligonucleotides against apolipoprotein(a) and small interfering RNA (siRNA) technology, to reduce the synthesis of Lp(a).
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Válvula Aórtica / Estenosis de la Válvula Aórtica / Arterias / Calcinosis / Lipoproteína(a) / Aterosclerosis / Placa Aterosclerótica Tipo de estudio: Etiology_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Límite: Animals / Humans Idioma: En Revista: Prog Cardiovasc Dis Año: 2020 Tipo del documento: Article País de afiliación: Polonia

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Válvula Aórtica / Estenosis de la Válvula Aórtica / Arterias / Calcinosis / Lipoproteína(a) / Aterosclerosis / Placa Aterosclerótica Tipo de estudio: Etiology_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Límite: Animals / Humans Idioma: En Revista: Prog Cardiovasc Dis Año: 2020 Tipo del documento: Article País de afiliación: Polonia
...