Your browser doesn't support javascript.
loading
Probing Solute-Solvent Interactions of Transition Metal Complexes Using L-Edge Absorption Spectroscopy.
Jay, Raphael M; Vaz da Cruz, Vinícius; Eckert, Sebastian; Fondell, Mattis; Mitzner, Rolf; Föhlisch, Alexander.
Afiliación
  • Jay RM; Universität Potsdam, Institut für Physik und Astronomie, Karl-Liebknecht-Straße 24/25, 14476 Potsdam, Germany.
  • Vaz da Cruz V; Universität Potsdam, Institut für Physik und Astronomie, Karl-Liebknecht-Straße 24/25, 14476 Potsdam, Germany.
  • Eckert S; Universität Potsdam, Institut für Physik und Astronomie, Karl-Liebknecht-Straße 24/25, 14476 Potsdam, Germany.
  • Fondell M; Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Institute for Methods and Instrumentation for Synchrotron Radiation Research, Albert-Einstein-Straße 15, 12489 Berlin, Germany.
  • Mitzner R; Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Institute for Methods and Instrumentation for Synchrotron Radiation Research, Albert-Einstein-Straße 15, 12489 Berlin, Germany.
  • Föhlisch A; Universität Potsdam, Institut für Physik und Astronomie, Karl-Liebknecht-Straße 24/25, 14476 Potsdam, Germany.
J Phys Chem B ; 124(27): 5636-5645, 2020 Jul 09.
Article en En | MEDLINE | ID: mdl-32532156
ABSTRACT
In order to tailor solution-phase chemical reactions involving transition metal complexes, it is critical to understand how their valence electronic charge distributions are affected by the solution environment. Here, solute-solvent interactions of a solvatochromic mixed-ligand iron complex were investigated using X-ray absorption spectroscopy at the transition metal L2,3-edge. Due to the selectivity of the corresponding core excitations to the iron 3d orbitals, the method grants direct access to the valence electronic structure around the iron center and its response to interactions with the solvent environment. A linear increase of the total L2,3-edge absorption cross section as a function of the solvent Lewis acidity is revealed. The effect is caused by relative changes in different metal-ligand-bonding channels, which preserve local charge densities while increasing the density of unoccupied states around the iron center. These conclusions are corroborated by a combination of molecular dynamics and spectrum simulations based on time-dependent density functional theory. The simulations reproduce the spectral trends observed in the X-ray but also optical absorption experiments. Our results underscore the importance of solute-solvent interactions when aiming for an accurate description of the valence electronic structure of solvated transition metal complexes and demonstrate how L2,3-edge absorption spectroscopy can aid in understanding the impact of the solution environment on intramolecular covalency and the electronic charge distribution.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Phys Chem B Asunto de la revista: QUIMICA Año: 2020 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Phys Chem B Asunto de la revista: QUIMICA Año: 2020 Tipo del documento: Article País de afiliación: Alemania
...