GPMVs as a Tool to Study Caveolin-Interacting Partners.
Methods Mol Biol
; 2169: 81-88, 2020.
Article
en En
| MEDLINE
| ID: mdl-32548821
Caveolins, major components of small plasma membrane invaginations called caveolae, play a role in signaling, particularly in mechanosignaling. These proteins are known to interact with a variety of effector molecules, including G-protein-coupled receptors, Src family kinases, ion channels, endothelial nitric oxide synthase (eNOS), adenylyl cyclases, protein kinase A (PKA), and mitogen-activated PKs (MAPKs). There is, however, speculation on the relevance of these interactions and the mechanisms by which caveolins may control intracellular signaling. This chapter introduces a method of isolation of giant plasma membrane-derived vesicles (GPMVs), which possess full complexity of membrane they originate from, thus comprising an excellent platform to revisit some of the previously described interactions in a cleaner environment and possibly identifying new binding partners. It is also a powerful technique for studying membrane mechanics, as it was previously used to demonstrate the role of caveolae in mechanoprotection.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Membrana Celular
/
Estructuras de la Membrana Celular
/
Proteínas de la Membrana
/
Microscopía
Límite:
Animals
/
Humans
Idioma:
En
Revista:
Methods Mol Biol
Asunto de la revista:
BIOLOGIA MOLECULAR
Año:
2020
Tipo del documento:
Article
País de afiliación:
Francia