Your browser doesn't support javascript.
loading
Investigation of the polyphosphate-accumulating organism population in the full-scale simultaneous chemical phosphorus removal system.
Wang, Baogui; Jiao, Erlong; Guo, Yu; Zhang, Lifang; Meng, Qingan; Zeng, Wei; Peng, Yongzhen.
Afiliación
  • Wang B; National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, No.100 Pingleyuan, Chaoyang District, Beijing, 100124, China.
  • Jiao E; Beijing Drainage Group Co., Ltd., Beijing, 100037, China.
  • Guo Y; National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, No.100 Pingleyuan, Chaoyang District, Beijing, 100124, China.
  • Zhang L; Beijing Drainage Group Co., Ltd., Beijing, 100037, China.
  • Meng Q; National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, No.100 Pingleyuan, Chaoyang District, Beijing, 100124, China.
  • Zeng W; National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, No.100 Pingleyuan, Chaoyang District, Beijing, 100124, China. zengwei@bjut.edu.cn.
  • Peng Y; National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, No.100 Pingleyuan, Chaoyang District, Beijing, 100124, China.
Environ Sci Pollut Res Int ; 27(30): 37877-37886, 2020 Oct.
Article en En | MEDLINE | ID: mdl-32617817
ABSTRACT
The simultaneous chemical phosphorus removal (SCPR) process has been widely applied in wastewater treatment plants (WWTPs) due to the high phosphorus removal efficiency through the synergy of biological and chemical phosphorus removal (BPR and CPR). However, phosphorus removal reagents could affect the bacterial community structure in the SCPR system and further affect the BPR process. The BPR phenotypes and community structures in the SCPR system, especially the population of polyphosphate-accumulating organisms (PAOs), are not completely clear. In order to clarify these problems, the phosphorus removal performance and the PAO population in a full-scale SCPR system were investigated. Results showed that diverse PAOs still existed in the SCPR system though the BPR phenotypes were not observed. However, the relative abundances of Accumulibacter and Tetrasphaera, the two most important genera of PAOs, were only 0.59% and 0.20%, respectively, while the relative abundances of Competibacter and Defluviicoccus, two genera of glycogen-accumulating organisms (GAOs), were as high as 5.77% and 1.28%, respectively. Batch tests showed that PAOs in the SCPR system still had a certain polyphosphate accumulating metabolic activity, which could gradually recover after stopping the addition of chemical reagents. This study provided a microbiological basis for the SCPR system to recover the enhanced biological phosphorus removal (EBPR) performance under suitable conditions, which could reduce the dosage of chemical reagents and the operational cost.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Fósforo / Reactores Biológicos Idioma: En Revista: Environ Sci Pollut Res Int Asunto de la revista: SAUDE AMBIENTAL / TOXICOLOGIA Año: 2020 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Fósforo / Reactores Biológicos Idioma: En Revista: Environ Sci Pollut Res Int Asunto de la revista: SAUDE AMBIENTAL / TOXICOLOGIA Año: 2020 Tipo del documento: Article País de afiliación: China
...