Your browser doesn't support javascript.
loading
Characterizing soundscapes across diverse ecosystems using a universal acoustic feature set.
Sethi, Sarab S; Jones, Nick S; Fulcher, Ben D; Picinali, Lorenzo; Clink, Dena Jane; Klinck, Holger; Orme, C David L; Wrege, Peter H; Ewers, Robert M.
Afiliación
  • Sethi SS; Department of Mathematics, Imperial College London, London, SW7 2AZ, United Kingdom; s.sethi16@imperial.ac.uk.
  • Jones NS; Dyson School of Design Engineering, Imperial College London, London, SW7 2AZ, United Kingdom.
  • Fulcher BD; Department of Life Sciences, Imperial College London, Ascot, SL5 7PY, United Kingdom.
  • Picinali L; Department of Mathematics, Imperial College London, London, SW7 2AZ, United Kingdom.
  • Clink DJ; School of Physics, University of Sydney, Sydney, NSW 2006, Australia.
  • Klinck H; Dyson School of Design Engineering, Imperial College London, London, SW7 2AZ, United Kingdom.
  • Orme CDL; Center for Conservation Bioacoustics, Cornell Lab of Ornithology, Cornell University, Ithaca, NY 14850.
  • Wrege PH; Center for Conservation Bioacoustics, Cornell Lab of Ornithology, Cornell University, Ithaca, NY 14850.
  • Ewers RM; Department of Life Sciences, Imperial College London, Ascot, SL5 7PY, United Kingdom.
Proc Natl Acad Sci U S A ; 117(29): 17049-17055, 2020 07 21.
Article en En | MEDLINE | ID: mdl-32636258
Natural habitats are being impacted by human pressures at an alarming rate. Monitoring these ecosystem-level changes often requires labor-intensive surveys that are unable to detect rapid or unanticipated environmental changes. Here we have developed a generalizable, data-driven solution to this challenge using eco-acoustic data. We exploited a convolutional neural network to embed soundscapes from a variety of ecosystems into a common acoustic space. In both supervised and unsupervised modes, this allowed us to accurately quantify variation in habitat quality across space and in biodiversity through time. On the scale of seconds, we learned a typical soundscape model that allowed automatic identification of anomalous sounds in playback experiments, providing a potential route for real-time automated detection of irregular environmental behavior including illegal logging and hunting. Our highly generalizable approach, and the common set of features, will enable scientists to unlock previously hidden insights from acoustic data and offers promise as a backbone technology for global collaborative autonomous ecosystem monitoring efforts.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Contexto en salud: 2_ODS3 Problema de salud: 2_quimicos_contaminacion Asunto principal: Espectrografía del Sonido / Acústica / Monitoreo del Ambiente / Ecosistema / Aprendizaje Automático Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2020 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Contexto en salud: 2_ODS3 Problema de salud: 2_quimicos_contaminacion Asunto principal: Espectrografía del Sonido / Acústica / Monitoreo del Ambiente / Ecosistema / Aprendizaje Automático Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2020 Tipo del documento: Article
...