Your browser doesn't support javascript.
loading
Range of Radiologist Performance in a Population-based Screening Cohort of 1 Million Digital Mammography Examinations.
Salim, Mattie; Dembrower, Karin; Eklund, Martin; Lindholm, Peter; Strand, Fredrik.
Afiliación
  • Salim M; From the Departments of Pathology and Oncology (M.S., F.S.), Physiology and Pharmacology (K.D., P.L.), and Medical Epidemiology and Biostatistics (M.E.), Karolinska Institute, Stockholm, Sweden; Department of Radiology (M.S.) and Breast Radiology (F.S.), Karolinska University Hospital, Dalagatan 90,
  • Dembrower K; From the Departments of Pathology and Oncology (M.S., F.S.), Physiology and Pharmacology (K.D., P.L.), and Medical Epidemiology and Biostatistics (M.E.), Karolinska Institute, Stockholm, Sweden; Department of Radiology (M.S.) and Breast Radiology (F.S.), Karolinska University Hospital, Dalagatan 90,
  • Eklund M; From the Departments of Pathology and Oncology (M.S., F.S.), Physiology and Pharmacology (K.D., P.L.), and Medical Epidemiology and Biostatistics (M.E.), Karolinska Institute, Stockholm, Sweden; Department of Radiology (M.S.) and Breast Radiology (F.S.), Karolinska University Hospital, Dalagatan 90,
  • Lindholm P; From the Departments of Pathology and Oncology (M.S., F.S.), Physiology and Pharmacology (K.D., P.L.), and Medical Epidemiology and Biostatistics (M.E.), Karolinska Institute, Stockholm, Sweden; Department of Radiology (M.S.) and Breast Radiology (F.S.), Karolinska University Hospital, Dalagatan 90,
  • Strand F; From the Departments of Pathology and Oncology (M.S., F.S.), Physiology and Pharmacology (K.D., P.L.), and Medical Epidemiology and Biostatistics (M.E.), Karolinska Institute, Stockholm, Sweden; Department of Radiology (M.S.) and Breast Radiology (F.S.), Karolinska University Hospital, Dalagatan 90,
Radiology ; 297(1): 33-39, 2020 10.
Article en En | MEDLINE | ID: mdl-32720866
Background There is great interest in developing artificial intelligence (AI)-based computer-aided detection (CAD) systems for use in screening mammography. Comparative performance benchmarks from true screening cohorts are needed. Purpose To determine the range of human first-reader performance measures within a population-based screening cohort of 1 million screening mammograms to gauge the performance of emerging AI CAD systems. Materials and Methods This retrospective study consisted of all screening mammograms in women aged 40-74 years in Stockholm County, Sweden, who underwent screening with full-field digital mammography between 2008 and 2015. There were 110 interpreting radiologists, of whom 24 were defined as high-volume readers (ie, those who interpreted more than 5000 annual screening mammograms). A true-positive finding was defined as the presence of a pathology-confirmed cancer within 12 months. Performance benchmarks included sensitivity and specificity, examined per quartile of radiologists' performance. First-reader sensitivity was determined for each tumor subgroup, overall and by quartile of high-volume reader sensitivity. Screening outcomes were examined based on the first reader's sensitivity quartile with 10 000 screening mammograms per quartile. Linear regression models were fitted to test for a linear trend across quartiles of performance. Results A total of 418 041 women (mean age, 54 years ± 10 [standard deviation]) were included, and 1 186 045 digital mammograms were evaluated, with 972 899 assessed by high-volume readers. Overall sensitivity was 73% (95% confidence interval [CI]: 69%, 77%), and overall specificity was 96% (95% CI: 95%, 97%). The mean values per quartile of high-volume reader performance ranged from 63% to 84% for sensitivity and from 95% to 98% for specificity. The sensitivity difference was very large for basal cancers, with the least sensitive and most sensitive high-volume readers detecting 53% and 89% of cancers, respectively (P < .001). Conclusion Benchmarks showed a wide range of performance differences between high-volume readers. Sensitivity varied by tumor characteristics. © RSNA, 2020 Online supplemental material is available for this article.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Contexto en salud: 2_ODS3 Problema de salud: 2_muertes_prematuras_enfermedades_notrasmisibles Asunto principal: Neoplasias de la Mama / Inteligencia Artificial / Competencia Clínica Tipo de estudio: Diagnostic_studies / Observational_studies / Prognostic_studies / Screening_studies Límite: Adult / Aged / Female / Humans / Middle aged País/Región como asunto: Europa Idioma: En Revista: Radiology Año: 2020 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Contexto en salud: 2_ODS3 Problema de salud: 2_muertes_prematuras_enfermedades_notrasmisibles Asunto principal: Neoplasias de la Mama / Inteligencia Artificial / Competencia Clínica Tipo de estudio: Diagnostic_studies / Observational_studies / Prognostic_studies / Screening_studies Límite: Adult / Aged / Female / Humans / Middle aged País/Región como asunto: Europa Idioma: En Revista: Radiology Año: 2020 Tipo del documento: Article
...