Insulin receptor substrate-1 inhibits high-fat diet-induced obesity by browning of white adipose tissue through miR-503.
FASEB J
; 34(9): 12308-12323, 2020 09.
Article
en En
| MEDLINE
| ID: mdl-32721050
Genetic variation of insulin receptor substrate 1 (IRS-1) was found to modulate the insulin resistance of adipose tissues, but the underlying mechanism was not clear. To investigate how the IRS-1 was involved in the browning of white adipose tissue through miRNA, we identified a mutated Irs-1 (Irs-1-/- ) mice model and found that this mice had a reduced subcutaneous WAT (sWAT) and increased brown adipose tissue (BAT) in the interscapular region. So we isolated the bone marrow stromal cells and analyzed differentially expressed miRNAs and adipogenesis-related genes with miRNA arrays and PCR arrays. Irs-1-/- mice showed decreased miR-503 expression, but increased expression of its target, bone morphogenetic protein receptor type 1a (BMPR1a). Overexpression of miR-503 in preadipocytes downregulated BMPR1a and impaired adipogenic activity through the phosphotidylinositol 3-kinase (PI3K/Akt) pathway, while the inhibitor had the opposite effect. In both Irs-1-/- and cold-induced models, sWAT exhibited BAT features, and showed tissue-specific increased BMPR1a expression, PI3K expression, and Akt phosphorylation. Thus, our results showed that IRS-1 regulated brown preadipocyte differentiation and induced browning in sWAT through the miR-503-BMPR1a pathway, which played important roles in high-fat diet-induced obesity.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
MicroARNs
/
Tejido Adiposo Blanco
/
Proteínas Sustrato del Receptor de Insulina
/
Dieta Alta en Grasa
/
Obesidad
Límite:
Animals
Idioma:
En
Revista:
FASEB J
Asunto de la revista:
BIOLOGIA
/
FISIOLOGIA
Año:
2020
Tipo del documento:
Article
País de afiliación:
China