Your browser doesn't support javascript.
loading
Landing Biomechanics in Adolescent Athletes With and Without a History of Sports-Related Concussion.
Avedesian, Jason M; Covassin, Tracey; Dufek, Janet S.
Afiliación
  • Avedesian JM; University of Nevada Las Vegas.
  • Covassin T; Michigan State University.
  • Dufek JS; University of Nevada Las Vegas.
J Appl Biomech ; 36(5): 313-318, 2020 Oct 01.
Article en En | MEDLINE | ID: mdl-32736340
Recent evidence suggests previously concussed athletes are at greater risk for lower-extremity (LE) injuries than are controls. However, little is known regarding the influence of sports-related concussion (SRC) on landing biomechanics that may provide a mechanistic rationale for LE injury risk. The purpose of this investigation was to examine LE drop-landing biomechanics in adolescent athletes with and without a previous SRC history. Participants included 10 adolescent athletes with an SRC history and 11 controls from multiple sports. Three-dimensional kinematic and kinetic data associated with LE injury risk were analyzed across 5 trials for 30- and 60-cm landing heights. Multivariate analyses indicated group differences in landing patterns from the 30- (P = .041) and 60-cm (P = .015) landing heights. Follow-up analyses indicated that concussed adolescent athletes demonstrated significantly less ankle dorsiflexion and knee flexion versus controls when performing drop landings. Our findings suggest that previously concussed adolescent athletes complete drop-landing maneuvers with ankle and knee joint kinematic patterns that suggest greater risk for LE injury. While limitations such as sport variety and explicit LE injury history are present, the results of this study provide a possible biomechanical rationale for the association between SRC and LE injury risk.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Appl Biomech Año: 2020 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Appl Biomech Año: 2020 Tipo del documento: Article
...