Your browser doesn't support javascript.
loading
Comparative Transcriptomics of Rice Genotypes with Contrasting Responses to Nitrogen Stress Reveals Genes Influencing Nitrogen Uptake through the Regulation of Root Architecture.
Subudhi, Prasanta K; Garcia, Richard S; Coronejo, Sapphire; Tapia, Ronald.
Afiliación
  • Subudhi PK; School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA.
  • Garcia RS; School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA.
  • Coronejo S; School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA.
  • Tapia R; School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA.
Int J Mol Sci ; 21(16)2020 Aug 11.
Article en En | MEDLINE | ID: mdl-32796695
The indiscriminate use of nitrogenous fertilizers continues unabated for commercial crop production, resulting in air and water pollution. The development of rice varieties with enhanced nitrogen use efficiency (NUE) will require a thorough understanding of the molecular basis of a plant's response to low nitrogen (N) availability. The global expression profiles of root tissues collected from low and high N treatments at different time points in two rice genotypes, Pokkali and Bengal, with contrasting responses to N stress and contrasting root architectures were examined. Overall, the number of differentially expressed genes (DEGs) in Pokkali (indica) was higher than in Bengal (japonica) during low N and early N recovery treatments. Most low N DEGs in both genotypes were downregulated whereas early N recovery DEGs were upregulated. Of these, 148 Pokkali-specific DEGs might contribute to Pokkali's advantage under N stress. These DEGs included transcription factors and transporters and were involved in stress responses, growth and development, regulation, and metabolism. Many DEGs are co-localized with quantitative trait loci (QTL) related to root growth and development, chlorate-resistance, and NUE. Our findings suggest that the superior growth performance of Pokkali under low N conditions could be due to the genetic differences in a diverse set of genes influencing N uptake through the regulation of root architecture.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Oryza / Estrés Fisiológico / Raíces de Plantas / Transcriptoma / Nitrógeno Idioma: En Revista: Int J Mol Sci Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Oryza / Estrés Fisiológico / Raíces de Plantas / Transcriptoma / Nitrógeno Idioma: En Revista: Int J Mol Sci Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos
...