Your browser doesn't support javascript.
loading
Back Contact Interfacial Modification in Highly-Efficient All-Inorganic Planar n-i-p Sb2Se3 Solar Cells.
Liu, Cong; Shen, Kai; Lin, Dongxu; Cao, Ye; Qiu, Shudi; Zheng, Jianzha; Bao, Feixiong; Gao, Yanyan; Zhu, Hongbing; Li, Zhiqiang; Mai, Yaohua.
Afiliación
  • Liu C; Institute of New Energy Technology, College of Information Science and Technology, Jinan University, Guangzhou 510632, China.
  • Shen K; Institute of New Energy Technology, College of Information Science and Technology, Jinan University, Guangzhou 510632, China.
  • Lin D; Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou 510632, China.
  • Cao Y; The College of Electronic Information, Qingdao University, Qingdao 266071, China.
  • Qiu S; Institute of New Energy Technology, College of Information Science and Technology, Jinan University, Guangzhou 510632, China.
  • Zheng J; Institute of New Energy Technology, College of Information Science and Technology, Jinan University, Guangzhou 510632, China.
  • Bao F; Institute of New Energy Technology, College of Information Science and Technology, Jinan University, Guangzhou 510632, China.
  • Gao Y; Institute of New Energy Technology, College of Information Science and Technology, Jinan University, Guangzhou 510632, China.
  • Zhu H; Institute of New Energy Technology, College of Information Science and Technology, Jinan University, Guangzhou 510632, China.
  • Li Z; National-Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, China.
  • Mai Y; Institute of New Energy Technology, College of Information Science and Technology, Jinan University, Guangzhou 510632, China.
ACS Appl Mater Interfaces ; 12(34): 38397-38405, 2020 Aug 26.
Article en En | MEDLINE | ID: mdl-32805980
ABSTRACT
Sb2Se3 is an emerging and promising light-absorbing material with superior photovoltaic properties. However, the specific one-dimensional structure of Sb2Se3 limits the doping density, preventing a high built-in potential. Moreover, in the superstrate devices the back contact is often non-ohmic. In this work, we have successfully applied tungsten oxide (WO3-x) as a hole-transport layer in superstrate n-i-p Sb2Se3 solar cells. It is found that an interfacial dipole is formed at Sb2Se3/WO3-x interface via Sb-W bonds, which reduces the barrier for hole extraction. Meantime, gap states are present at a suitable energy level to serve as intermediate states for hole-transport from the Sb2Se3 absorber to the metal anode. In addition, the introduction of WO3-x can suppress carrier recombination at the back interface, enhance the built-in potential, and improve the spectral response in the long-wavelength region. Consequently, the superstrate devices with the incorporated WO3-x layer achieve a champion efficiency of 7.10% due to the enhancement of all device parameters. Furthermore, the all-inorganic devices with WO3-x hole-transport layer exhibit excellent air stability and thermal stability.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2020 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2020 Tipo del documento: Article País de afiliación: China
...