Your browser doesn't support javascript.
loading
How the Barrel Cortex Became a Working Model for Developmental Plasticity: A Historical Perspective.
Erzurumlu, Reha S; Gaspar, Patricia.
Afiliación
  • Erzurumlu RS; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201 rerzurumlu@som.umaryland.edu.
  • Gaspar P; Institut National de la Santé et de la Recherche Médicale, Paris Brain Institute, Sorbonne Universités, Paris, France 75013.
J Neurosci ; 40(34): 6460-6473, 2020 08 19.
Article en En | MEDLINE | ID: mdl-32817388
For half a century now, the barrel cortex of common laboratory rodents has been an exceptionally useful model for studying the formation of topographically organized maps, neural patterning, and plasticity, both in development and in maturity. We present a historical perspective on how barrels were discovered, and how thereafter, they became a workhorse for developmental neuroscientists and for studies on brain plasticity and activity-dependent modeling of brain circuits. What is particularly remarkable about this sensory system is a cellular patterning that is induced by signals derived from the sensory receptors surrounding the snout whiskers and transmitted centrally to the brainstem (barrelettes), the thalamus (barreloids), and the neocortex (barrels). Injury to the sensory receptors shortly after birth leads to predictable pattern alterations at all levels of the system. Mouse genetics have increased our understanding of how barrels are constructed and revealed the interplay of the molecular programs that direct axon growth and cell specification, with activity-dependent mechanisms. There is an ever-rising interest in this sensory system as a neurobiological model to study development of somatotopy, patterning, and plasticity at both the morphologic and physiological levels. This article is part of a group of articles commemorating the 50th anniversary of the Society for Neuroscience.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Corteza Somatosensorial / Modelos Neurológicos / Plasticidad Neuronal Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: J Neurosci Año: 2020 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Corteza Somatosensorial / Modelos Neurológicos / Plasticidad Neuronal Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: J Neurosci Año: 2020 Tipo del documento: Article
...