Your browser doesn't support javascript.
loading
Evolution of the Kondo lattice electronic structure above the transport coherence temperature.
Jang, Sooyoung; Denlinger, J D; Allen, J W; Zapf, V S; Maple, M B; Kim, Jae Nyeong; Jang, Bo Gyu; Shim, Ji Hoon.
Afiliación
  • Jang S; Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720.
  • Denlinger JD; Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720; mbmaple@ucsd.edu jddenlinger@lbl.gov jhshim@postech.ac.kr.
  • Allen JW; Department of Physics, Randall Laboratory, University of Michigan, Ann Arbor, MI 48109.
  • Zapf VS; National High Magnet Field Laboratory, Los Alamos National Laboratory, Los Alamos, NM 84745.
  • Maple MB; Department of Physics, University of California San Diego, La Jolla, CA 92903; mbmaple@ucsd.edu jddenlinger@lbl.gov jhshim@postech.ac.kr.
  • Kim JN; Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea.
  • Jang BG; Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea.
  • Shim JH; Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea; mbmaple@ucsd.edu jddenlinger@lbl.gov jhshim@postech.ac.kr.
Proc Natl Acad Sci U S A ; 117(38): 23467-23476, 2020 Sep 22.
Article en En | MEDLINE | ID: mdl-32887802
ABSTRACT
The temperature-dependent evolution of the Kondo lattice is a long-standing topic of theoretical and experimental investigation and yet it lacks a truly microscopic description of the relation of the basic f-c hybridization processes to the fundamental temperature scales of Kondo screening and Fermi-liquid lattice coherence. Here, the temperature dependence of f-c hybridized band dispersions and Fermi-energy f spectral weight in the Kondo lattice system CeCoIn5 is investigated using f-resonant angle-resolved photoemission spectroscopy (ARPES) with sufficient detail to allow direct comparison to first-principles dynamical mean-field theory (DMFT) calculations containing full realism of crystalline electric-field states. The ARPES results, for two orthogonal (001) and (100) cleaved surfaces and three different f-c hybridization configurations, with additional microscopic insight provided by DMFT, reveal f participation in the Fermi surface at temperatures much higher than the lattice coherence temperature, [Formula see text] K, commonly believed to be the onset for such behavior. The DMFT results show the role of crystalline electric-field (CEF) splittings in this behavior and a T-dependent CEF degeneracy crossover below [Formula see text] is specifically highlighted. A recent ARPES report of low T Luttinger theorem failure for CeCoIn5 is shown to be unjustified by current ARPES data and is not found in the theory.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2020 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2020 Tipo del documento: Article
...