Your browser doesn't support javascript.
loading
Response of Downy Oak (Quercus pubescens Willd.) to Climate Change: Transcriptome Assembly, Differential Gene Analysis and Targeted Metabolomics.
Mevy, Jean-Philippe; Loriod, Beatrice; Liu, Xi; Corre, Erwan; Torres, Magali; Büttner, Michael; Haguenauer, Anne; Reiter, Ilja Marco; Fernandez, Catherine; Gauquelin, Thierry.
Afiliación
  • Mevy JP; CNRS, Aix-Marseille University, Avignon University, IRD, IMBE, 13331 Marseille, France.
  • Loriod B; TGML-TAGC-Inserm UMR1090 Aix-Marseille Université 163 avenue de Luminy, 13288 Marseille, France.
  • Liu X; CNRS, Sorbonne Université, FR2424, ABiMS platform, Station Biologique, 29680 Roscoff, France.
  • Corre E; CNRS, Sorbonne Université, FR2424, ABiMS platform, Station Biologique, 29680 Roscoff, France.
  • Torres M; TGML-TAGC-Inserm UMR1090 Aix-Marseille Université 163 avenue de Luminy, 13288 Marseille, France.
  • Büttner M; Metabolomics Core Technology Platform Ruprecht-Karls-University Heidelberg Centre for Organismal Studies (COS) Im Neuenheimer Feld 360, 69120 Heidelberg, Germany.
  • Haguenauer A; CNRS, Aix-Marseille University, Avignon University, IRD, IMBE, 13331 Marseille, France.
  • Reiter IM; Research Federation ECCOREV FR3098, CNRS, 13545 Aix-en-Provence, France.
  • Fernandez C; CNRS, Aix-Marseille University, Avignon University, IRD, IMBE, 13331 Marseille, France.
  • Gauquelin T; CNRS, Aix-Marseille University, Avignon University, IRD, IMBE, 13331 Marseille, France.
Plants (Basel) ; 9(9)2020 Sep 04.
Article en En | MEDLINE | ID: mdl-32899727
ABSTRACT
Global change scenarios in the Mediterranean basin predict a precipitation reduction within the coming hundred years. Therefore, increased drought will affect forests both in terms of adaptive ecology and ecosystemic services. However, how vegetation might adapt to drought is poorly understood. In this report, four years of climate change was simulated by excluding 35% of precipitation above a downy oak forest. RNASeq data allowed us to assemble a genome-guided transcriptome. This led to the identification of differentially expressed features, which was supported by the characterization of target metabolites using a metabolomics approach. We provided 2.5 Tb of RNASeq data and the assembly of the first genome guided transcriptome of Quercus pubescens. Up to 5724 differentially expressed transcripts were obtained; 42 involved in plant response to drought. Transcript set enrichment analysis showed that drought induces an increase in oxidative pressure that is mitigated by the upregulation of ubiquitin-like protein protease, ferrochelatase, oxaloacetate decarboxylase and oxo-acid-lyase activities. Furthermore, the downregulation of auxin biosynthesis and transport, carbohydrate storage metabolism were observed as well as the concomitant accumulation of metabolites, such as oxalic acid, malate and isocitrate. Our data suggest that early metabolic changes in the resistance of Q. pubescens to drought involve a tricarboxylic acid (TCA) cycle shunt through the glyoxylate pathway, galactose metabolism by reducing carbohydrate storage and increased proteolytic activity.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Plants (Basel) Año: 2020 Tipo del documento: Article País de afiliación: Francia

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Plants (Basel) Año: 2020 Tipo del documento: Article País de afiliación: Francia
...