Personalized cancer therapy prioritization based on driver alteration co-occurrence patterns.
Genome Med
; 12(1): 78, 2020 09 09.
Article
en En
| MEDLINE
| ID: mdl-32907621
Identification of actionable genomic vulnerabilities is key to precision oncology. Utilizing a large-scale drug screening in patient-derived xenografts, we uncover driver gene alteration connections, derive driver co-occurrence (DCO) networks, and relate these to drug sensitivity. Our collection of 53 drug-response predictors attains an average balanced accuracy of 58% in a cross-validation setting, rising to 66% for a subset of high-confidence predictions. We experimentally validated 12 out of 14 predictions in mice and adapted our strategy to obtain drug-response models from patients' progression-free survival data. Our strategy reveals links between oncogenic alterations, increasing the clinical impact of genomic profiling.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Medicina de Precisión
/
Modelos Teóricos
/
Neoplasias
Tipo de estudio:
Prognostic_studies
Límite:
Humans
Idioma:
En
Revista:
Genome Med
Año:
2020
Tipo del documento:
Article
País de afiliación:
España