Your browser doesn't support javascript.
loading
Personalized cancer therapy prioritization based on driver alteration co-occurrence patterns.
Mateo, Lidia; Duran-Frigola, Miquel; Gris-Oliver, Albert; Palafox, Marta; Scaltriti, Maurizio; Razavi, Pedram; Chandarlapaty, Sarat; Arribas, Joaquin; Bellet, Meritxell; Serra, Violeta; Aloy, Patrick.
Afiliación
  • Mateo L; Joint IRB-BSC-CRG Program in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain.
  • Duran-Frigola M; Joint IRB-BSC-CRG Program in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain.
  • Gris-Oliver A; Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Catalonia, Spain.
  • Palafox M; Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Catalonia, Spain.
  • Scaltriti M; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, 10065, USA.
  • Razavi P; Department of Pathology, MSKCC, New York, NY, 10065, USA.
  • Chandarlapaty S; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, 10065, USA.
  • Arribas J; Breast Medicine Service, Department of Medicine, MSKCC and Weill-Cornell Medical College, New York, NY, 10065, USA.
  • Bellet M; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, 10065, USA.
  • Serra V; Breast Medicine Service, Department of Medicine, MSKCC and Weill-Cornell Medical College, New York, NY, 10065, USA.
  • Aloy P; Growth Factors Laboratory, Vall d'Hebron Institute of Oncology, Barcelona, Catalonia, Spain.
Genome Med ; 12(1): 78, 2020 09 09.
Article en En | MEDLINE | ID: mdl-32907621
Identification of actionable genomic vulnerabilities is key to precision oncology. Utilizing a large-scale drug screening in patient-derived xenografts, we uncover driver gene alteration connections, derive driver co-occurrence (DCO) networks, and relate these to drug sensitivity. Our collection of 53 drug-response predictors attains an average balanced accuracy of 58% in a cross-validation setting, rising to 66% for a subset of high-confidence predictions. We experimentally validated 12 out of 14 predictions in mice and adapted our strategy to obtain drug-response models from patients' progression-free survival data. Our strategy reveals links between oncogenic alterations, increasing the clinical impact of genomic profiling.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Medicina de Precisión / Modelos Teóricos / Neoplasias Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Genome Med Año: 2020 Tipo del documento: Article País de afiliación: España

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Medicina de Precisión / Modelos Teóricos / Neoplasias Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Genome Med Año: 2020 Tipo del documento: Article País de afiliación: España
...