Your browser doesn't support javascript.
loading
PTML Multi-Label Algorithms: Models, Software, and Applications.
Ortega-Tenezaca, Bernabe; Quevedo-Tumailli, Viviana; Bediaga, Harbil; Collados, Jon; Arrasate, Sonia; Madariaga, Gotzon; Munteanu, Cristian R; Cordeiro, M Natália D S; González-Díaz, Humbert.
Afiliación
  • Ortega-Tenezaca B; RNASA-IMEDIR, Computer Science Faculty, University of A Coruna, 15071 A Coruña, Spain
  • Quevedo-Tumailli V; Universidad Estatal Amazónica UEA, Puyo, Pastaza, Ecuador
  • Bediaga H; LAQV@REQUIMTE, Department of Chemistry and Biochemistry, University of Porto, 4169-007 Porto, Portugal
  • Collados J; RNASA-IMEDIR, Computer Science Faculty, University of A Coruna, 15071 A Coruña, Spain
  • Arrasate S; Universidad Estatal Amazónica UEA, Puyo, Pastaza, Ecuador
  • Madariaga G; LAQV@REQUIMTE, Department of Chemistry and Biochemistry, University of Porto, 4169-007 Porto, Portugal
  • Munteanu CR; Department of Organic and Inorganic Chemistry, University of Basque Country UPV/EHU, 48940 Leioa, Spain
  • Cordeiro MNDS; Department of Organic and Inorganic Chemistry, University of Basque Country UPV/EHU, 48940 Leioa, Spain
  • González-Díaz H; Department of Condensed Matter Physics, University of Basque Country UPV/EHU, 48940 Leioa, Spain
Curr Top Med Chem ; 20(25): 2326-2337, 2020.
Article en En | MEDLINE | ID: mdl-32938352
By combining Machine Learning (ML) methods with Perturbation Theory (PT), it is possible to develop predictive models for a variety of response targets. Such combination often known as Perturbation Theory Machine Learning (PTML) modeling comprises a set of techniques that can handle various physical, and chemical properties of different organisms, complex biological or material systems under multiple input conditions. In so doing, these techniques effectively integrate a manifold of diverse chemical and biological data into a single computational framework that can then be applied for screening lead chemicals as well as to find clues for improving the targeted response(s). PTML models have thus been extremely helpful in drug or material design efforts and found to be predictive and applicable across a broad space of systems. After a brief outline of the applied methodology, this work reviews the different uses of PTML in Medicinal Chemistry, as well as in other applications. Finally, we cover the development of software available nowadays for setting up PTML models from large datasets.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Programas Informáticos / Bases de Datos de Compuestos Químicos / Aprendizaje Automático Tipo de estudio: Prognostic_studies Idioma: En Revista: Curr Top Med Chem Asunto de la revista: QUIMICA Año: 2020 Tipo del documento: Article País de afiliación: España

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Programas Informáticos / Bases de Datos de Compuestos Químicos / Aprendizaje Automático Tipo de estudio: Prognostic_studies Idioma: En Revista: Curr Top Med Chem Asunto de la revista: QUIMICA Año: 2020 Tipo del documento: Article País de afiliación: España
...