Your browser doesn't support javascript.
loading
Multiscale electronic and thermomechanical dynamics in ultrafast nanoscale laser structuring of bulk fused silica.
Somayaji, Madhura; Bhuyan, Manoj K; Bourquard, Florent; Velpula, Praveen K; D'Amico, Ciro; Colombier, Jean-Philippe; Stoian, Razvan.
Afiliación
  • Somayaji M; Laboratoire Hubert Curien, UMR 5516 CNRS, Université de Lyon, Université Jean Monnet, 42000, Saint Etienne, France.
  • Bhuyan MK; Laboratoire Hubert Curien, UMR 5516 CNRS, Université de Lyon, Université Jean Monnet, 42000, Saint Etienne, France.
  • Bourquard F; Academy of Scientific and Innovative Research, CSIR-Central Scientific Instruments Organization, Chandigarh, 160030, India.
  • Velpula PK; Optical Devices and Systems Division, CSIR-Central Scientific Instruments Organization, Chandigarh, 160030, India.
  • D'Amico C; Laboratoire Hubert Curien, UMR 5516 CNRS, Université de Lyon, Université Jean Monnet, 42000, Saint Etienne, France.
  • Colombier JP; Laboratoire Hubert Curien, UMR 5516 CNRS, Université de Lyon, Université Jean Monnet, 42000, Saint Etienne, France.
  • Stoian R; Laboratoire Hubert Curien, UMR 5516 CNRS, Université de Lyon, Université Jean Monnet, 42000, Saint Etienne, France.
Sci Rep ; 10(1): 15152, 2020 Sep 16.
Article en En | MEDLINE | ID: mdl-32938949
ABSTRACT
We describe the evolution of ultrafast-laser-excited bulk fused silica over the entire relaxation range in one-dimensional geometries fixed by non-diffractive beams. Irradiation drives local embedded modifications of the refractive index in the form of index increase in densified glass or in the form of nanoscale voids. A dual spectroscopic and imaging investigation procedure is proposed, coupling electronic excitation and thermodynamic relaxation. Specific sub-ps and ns plasma decay times are respectively correlated to these index-related electronic and thermomechanical transformations. For the void formation stages, based on time-resolved spectral imaging, we first observe a dense transient plasma phase that departs from the case of a rarefied gas, and we indicate achievable temperatures in the excited matter in the 4,000-5,500 K range, extending for tens of ns. High-resolution speckle-free microscopy is then used to image optical signatures associated to structural transformations until the evolution stops. Multiscale imaging indicates characteristic timescales for plasma decay, heat diffusion, and void cavitation, pointing out key mechanisms of material transformation on the nanoscale in a range of processing conditions. If glass densification is driven by sub-ps electronic decay, for nanoscale structuring we advocate the passage through a long-living dense ionized phase that decomposes on tens of ns, triggering cavitation.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Sci Rep Año: 2020 Tipo del documento: Article País de afiliación: Francia

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Sci Rep Año: 2020 Tipo del documento: Article País de afiliación: Francia
...