Your browser doesn't support javascript.
loading
Stem Cells and Their Cardiac Derivatives for Cardiac Tissue Engineering and Regenerative Medicine.
Roshanbinfar, Kaveh; Esser, Tilman U; Engel, Felix B.
Afiliación
  • Roshanbinfar K; Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
  • Esser TU; Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
  • Engel FB; Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
Antioxid Redox Signal ; 35(3): 143-162, 2021 07 20.
Article en En | MEDLINE | ID: mdl-32993354
Significance: Heart failure is among the leading causes of morbidity worldwide with a 5-year mortality rate of ∼50%. Therefore, major efforts are invested to reduce heart damage upon injury or maintain and at best restore heart function. Recent Advances: In clinical trials, acellular constructs succeeded in improving cardiac function by stabilizing the infarcted heart. In addition, strategies utilizing stem-cell-derived cardiomyocytes have been developed to improve heart function postmyocardial infarction in small and large animal models. These strategies range from injection of cell-laden hydrogels to unstructured hydrogel-based and complex biofabricated cardiac patches. Importantly, novel methods have been developed to promote differentiation of stem-cell-derived cardiomyocytes to prevascularized cardiac patches. Critical Issues: Despite substantial progress in vascularization strategies for heart-on-the-chip technologies, little advance has been made in generating vascularized cardiac patches with clinically relevant dimensions. In addition, proper electrical coupling between engineered and host tissue to prevent and/or eliminate arrhythmia remains an unresolved issue. Finally, despite advanced approaches to include hierarchical structures in cardiac tissues, engineered tissues do not generate forces in the range of native adult cardiac tissue. Future Directions: It involves utilizing novel materials and advancing biofabrication strategies to generate prevascularized three-dimensional multicellular constructs of clinical relevant size; inclusion of hierarchical structures, electroconductive materials, and biologically active factors to enhance cardiomyocyte differentiation for optimized force generation and vascularization; optimization of bioreactor strategies for tissue maturation. Antioxid. Redox Signal. 35, 143-162.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Contexto en salud: 6_ODS3_enfermedades_notrasmisibles Problema de salud: 6_other_circulatory_diseases Asunto principal: Células Madre / Ingeniería de Tejidos / Miocitos Cardíacos / Medicina Regenerativa Tipo de estudio: Diagnostic_studies / Etiology_studies / Prognostic_studies Límite: Animals / Humans Idioma: En Revista: Antioxid Redox Signal Asunto de la revista: METABOLISMO Año: 2021 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Contexto en salud: 6_ODS3_enfermedades_notrasmisibles Problema de salud: 6_other_circulatory_diseases Asunto principal: Células Madre / Ingeniería de Tejidos / Miocitos Cardíacos / Medicina Regenerativa Tipo de estudio: Diagnostic_studies / Etiology_studies / Prognostic_studies Límite: Animals / Humans Idioma: En Revista: Antioxid Redox Signal Asunto de la revista: METABOLISMO Año: 2021 Tipo del documento: Article País de afiliación: Alemania
...