Your browser doesn't support javascript.
loading
Isolinderalactone Induces Cell Death via Mitochondrial Superoxide- and STAT3-Mediated Pathways in Human Ovarian Cancer Cells.
Rajina, Shakya; Kim, Woo Jean; Shim, Jung-Hyun; Chun, Kyung-Soo; Joo, Sang Hoon; Shin, Hwa Kyoung; Lee, Seo-Yeon; Choi, Joon-Seok.
Afiliación
  • Rajina S; College of Pharmacy, Daegu Catholic University, Gyeongbuk 38430, Korea.
  • Kim WJ; Department of Anatomy, College of Medicine, Kosin University, Busan 49267, Korea.
  • Shim JH; Department of Pharmacy, Mokpo National University, Jeonnam 58554, Korea.
  • Chun KS; Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University, Jeonnam 58554, Korea.
  • Joo SH; College of Pharmacy, Keimyung University, Daegu 42601, Korea.
  • Shin HK; College of Pharmacy, Daegu Catholic University, Gyeongbuk 38430, Korea.
  • Lee SY; Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam 50612, Korea.
  • Choi JS; Korean Medical Science Research Center for Healthy-Aging, Pusan National University, Yangsan, Gyeongnam 50612, Korea.
Int J Mol Sci ; 21(20)2020 Oct 13.
Article en En | MEDLINE | ID: mdl-33066004
ABSTRACT
The mortality rate of ovarian cancer (OC) worldwide increases with age. OC is an often fatal cancer with a curative rate of only 20-30%, as symptoms often appear after disease progression. Studies have reported that isolinderalactone (ILL), a furanosesquiterpene derivative extracted from the dried root of Lindera aggregata, can inhibit several cancer cell lines' growth. However, the molecular mechanisms underlying ILL activities in human OC cells remain unexplored. This study investigated the antitumor activities of ILL in human OC cells by inducing mitochondrial superoxide (mtSO) and JAK-signal transducer and activator of transcription 3 (STAT3)-dependent cell death. ILL caused cell death in SKOV-3 and OVCAR-3 cells and increased the cell proportion in the subG1 phase. Additionally, ILL significantly induced mtSO production and reduced ROS production. Moreover, ILL downregulated mitochondrial membrane potential and the expression levels of anti-apoptotic Bcl-2 family proteins and superoxide dismutase (SOD)2. Results showed that ILL decreased phosphorylation of serine 727 and tyrosine 705 of STAT3 and expression of survivin, a STAT3-regulated gene. Furthermore, ILL-induced cell death was reversed by pretreatment of Mito-TEMPO, a mitochondria-specific antioxidant. These results suggest that ILL induces cell death by upregulation of mtSO, downregulation of mitochondrial SOD2, and inactivation of the STAT3-mediated pathway.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Contexto en salud: 6_ODS3_enfermedades_notrasmisibles Problema de salud: 6_endocrine_disorders / 6_ovary_cancer Asunto principal: Neoplasias Ováricas / Sesquiterpenos / Antiinflamatorios no Esteroideos / Antineoplásicos Límite: Female / Humans Idioma: En Revista: Int J Mol Sci Año: 2020 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Contexto en salud: 6_ODS3_enfermedades_notrasmisibles Problema de salud: 6_endocrine_disorders / 6_ovary_cancer Asunto principal: Neoplasias Ováricas / Sesquiterpenos / Antiinflamatorios no Esteroideos / Antineoplásicos Límite: Female / Humans Idioma: En Revista: Int J Mol Sci Año: 2020 Tipo del documento: Article
...