Your browser doesn't support javascript.
loading
Functional assessment of cryopreserved clinical grade hESC-RPE cells as a qualified cell source for stem cell therapy of retinal degenerative diseases.
Li, Qi-You; Zou, Ting; Gong, Yu; Chen, Si-Yu; Zeng, Yu-Xiao; Gao, Li-Xiong; Weng, Chuan-Huang; Xu, Hai-Wei; Yin, Zheng-Qin.
Afiliación
  • Li QY; Southwest Hospital/ Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, PR China.
  • Zou T; Southwest Hospital/ Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, PR China.
  • Gong Y; Southwest Hospital/ Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, PR China.
  • Chen SY; Southwest Hospital/ Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, PR China.
  • Zeng YX; Southwest Hospital/ Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, PR China.
  • Gao LX; Southwest Hospital/ Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, PR China; Department of Ophthalmology, The 6th Medical Center of PLA Gene
  • Weng CH; Southwest Hospital/ Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, PR China.
  • Xu HW; Southwest Hospital/ Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, PR China. Electronic address: xuhaiwei@tmmu.edu.cn.
  • Yin ZQ; Southwest Hospital/ Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, PR China. Electronic address: qinzyin@aliyun.com.
Exp Eye Res ; 202: 108305, 2021 01.
Article en En | MEDLINE | ID: mdl-33080300
ABSTRACT
The biosafety and efficiency of transplanting retinal pigment epithelial (RPE) cells derived from both human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) have been evaluated in phase I and phase II clinical trials. For further large-scale application, cryopreserved RPE cells must be used; thus, it is highly important to investigate the influence of cryopreservation and thawing on the biological characteristics of hESC-RPE cells and their post-transplantation vision-restoring function. Here, via immunofluorescence, qPCR, transmission electron microscopy, transepithelial electrical resistance, and enzyme-linked immunosorbent assays (ELISAs), we showed that cryopreserved hESC-RPE cells retained the specific gene expression profile, morphology, ultrastructure, and maturity-related functions of induced RPE cells. Additionally, cryopreserved hESC-RPE cells exhibited a polarized monolayer, tight junction, and gap junction structure and an in vitro nanoparticle phagocytosis capability similar to those of induced hESC-RPE cells. However, the level of pigment epithelium-derived factor (PEDF) secretion was significantly decreased in cryopreserved hESC-RPE cells. Royal College of Surgeons rats with cryopreserved hESC-RPE cells engrafted into the subretinal space exhibited a significant decrease in the b-wave amplitude compared with rats engrafted with induced hESC-RPE cells at 4 weeks post transplantation. However, the difference disappeared at 8 weeks and 12 weeks post operation. No significant difference in the outer nuclear layer (ONL) thickness was observed between the two groups. Our data showed that even after cryopreservation and thawing, cryopreserved hESC-RPE cells are still qualified as a donor cell source for cell-based therapy of retinal degenerative diseases.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Degeneración Retiniana / Trasplante de Células Madre / Epitelio Pigmentado de la Retina / Células Madre Embrionarias Humanas Límite: Humans Idioma: En Revista: Exp Eye Res Año: 2021 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Degeneración Retiniana / Trasplante de Células Madre / Epitelio Pigmentado de la Retina / Células Madre Embrionarias Humanas Límite: Humans Idioma: En Revista: Exp Eye Res Año: 2021 Tipo del documento: Article
...