Equilibrium and transient thermodynamics: A unified dissipaton-space approach.
J Chem Phys
; 153(15): 154111, 2020 Oct 21.
Article
en En
| MEDLINE
| ID: mdl-33092348
This work presents a unified dissipaton-equation-of-motion (DEOM) theory and its evaluations on the Helmholtz free energy change due to the isotherm mixing of two isolated subsystems. One is a local impurity, and the other is a nonlocal Gaussian bath. DEOM constitutes a fundamental theory for such open quantum mixtures. To complete the theory, we also construct the imaginary-time DEOM formalism via an analytical continuation of dissipaton algebra, which would be limited to equilibrium thermodynamics. On the other hand, the real-time DEOM deals with both equilibrium structural and nonequilibrium dynamic properties. Its combination with the thermodynamic integral formalism would be a viable and accurate means to both equilibrium and transient thermodynamics. As illustrations, we report the numerical results on a spin-boson system, with elaborations on the underlying anharmonic features, the thermodynamic entropy vs the von Neumann entropy, and an indication of "solvent-cage" formation. Beside the required asymptotic equilibrium properties, the proposed transient thermodynamics also supports the basic spontaneity criterion.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
J Chem Phys
Año:
2020
Tipo del documento:
Article
País de afiliación:
China