Your browser doesn't support javascript.
loading
An affinity change model to elucidate the rotation mechanism of V1-ATPase.
Arai, Satoshi; Maruyama, Shintaro; Shiroishi, Mitsunori; Yamato, Ichiro; Murata, Takeshi.
Afiliación
  • Arai S; Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku Katsushika-ku, Tokyo 125-8585, Japan; Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho Inage, Chiba, 263-8522, Japan.
  • Maruyama S; Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho Inage, Chiba, 263-8522, Japan.
  • Shiroishi M; Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku Katsushika-ku, Tokyo 125-8585, Japan.
  • Yamato I; Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku Katsushika-ku, Tokyo 125-8585, Japan; Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho Inage, Chiba, 263-8522, Japan. Electronic address: iyamato@rs.noda.tus.ac.jp.
  • Murata T; Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho Inage, Chiba, 263-8522, Japan; Molecular Chirality Research, Chiba University, 1-33 Yayoi-cho Inage, Chiba, 263-8522, Japan. Electronic address: t.murata@faculty.chiba-u.jp.
Biochem Biophys Res Commun ; 533(4): 1413-1418, 2020 12 17.
Article en En | MEDLINE | ID: mdl-33097182
V-ATPases are ubiquitous proton-transporting ATPases of eukaryotic and prokaryotic membranes that utilize energy from ATP hydrolysis. The hydrophilic catalytic part called V1-ATPase is composed of a ring-shaped hexametric A3B3 complex and a central DF shaft. We previously proposed a rotation mechanism of the Enterococcus hirae V1-ATPase based on the crystal structures of the V1 and A3B3 complexes. However, the driving force that induces the conformational changes of A3B3 and rotation of the DF shaft remains unclear. In this study, we investigated the binding affinity changes between subunits of V1-ATPase by surface plasmon resonance analysis. The binding of ATP to subunit A was found to considerably increase the affinity between the A and B subunits, and thereby ATP binding contributes to forming the A1B1 tight conformation. Furthermore, the DF shaft bound to the reconstituted A1B1 complex with high affinity, suggesting that the tight A1B1 complex is a major binding unit of the shaft in the A3B3 ring complex. Based on these results, we propose that rotation of the V1-ATPase is driven by affinity changes between each subunit via thermal fluctuations.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: ATPasas de Translocación de Protón Vacuolares Idioma: En Revista: Biochem Biophys Res Commun Año: 2020 Tipo del documento: Article País de afiliación: Japón

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: ATPasas de Translocación de Protón Vacuolares Idioma: En Revista: Biochem Biophys Res Commun Año: 2020 Tipo del documento: Article País de afiliación: Japón
...