Your browser doesn't support javascript.
loading
Lattice-Distortion-Enhanced Yield Strength in a Refractory High-Entropy Alloy.
Lee, Chanho; Chou, Yi; Kim, George; Gao, Michael C; An, Ke; Brechtl, Jamieson; Zhang, Chuan; Chen, Wei; Poplawsky, Jonathan D; Song, Gian; Ren, Yang; Chou, Yi-Chia; Liaw, Peter K.
Afiliación
  • Lee C; Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN, 37996-2100, USA.
  • Chou Y; Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
  • Kim G; Department of Electrophysics, National Chiao Tung University, Hsinchu, 30010, Taiwan.
  • Gao MC; Department of Mechanical, Materials, and Aerospace Engineering, Illinois Institute of Technology, Chicago, IL, 60616, USA.
  • An K; National Energy Technology Laboratory/Leidos Research Support Team, Albany, OR, 97321, USA.
  • Brechtl J; Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
  • Zhang C; Energy and Transportation Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
  • Chen W; Computherm LLC, 8401 Greenway Blvd, Middleton, WI, 53562, USA.
  • Poplawsky JD; Department of Mechanical, Materials, and Aerospace Engineering, Illinois Institute of Technology, Chicago, IL, 60616, USA.
  • Song G; Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
  • Ren Y; Division of Advanced Materials Engineering and Institute for Rare Metals, Kongju National University, Cheonan, Chungnam, 330-717, Republic of Korea.
  • Chou YC; X-ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA.
  • Liaw PK; Department of Electrophysics, National Chiao Tung University, Hsinchu, 30010, Taiwan.
Adv Mater ; 32(49): e2004029, 2020 Dec.
Article en En | MEDLINE | ID: mdl-33135322
Severe distortion is one of the four core effects in single-phase high-entropy alloys (HEAs) and contributes significantly to the yield strength. However, the connection between the atomic-scale lattice distortion and macro-scale mechanical properties through experimental verification has yet to be fully achieved, owing to two critical challenges: 1) the difficulty in the development of homogeneous single-phase solid-solution HEAs and 2) the ambiguity in describing the lattice distortion and related measurements and calculations. A single-phase body-centered-cubic (BCC) refractory HEA, NbTaTiVZr, using thermodynamic modeling coupled with experimental verifications, is developed. Compared to the previously developed single-phase NbTaTiV HEA, the NbTaTiVZr HEA shows a higher yield strength and comparable plasticity. The increase in yield strength is systematically and quantitatively studied in terms of lattice distortion using a theoretical model, first-principles calculations, synchrotron X-ray/neutron diffraction, atom-probe tomography, and scanning transmission electron microscopy techniques. These results demonstrate that severe lattice distortion is a core factor for developing high strengths in refractory HEAs.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Adv Mater Asunto de la revista: BIOFISICA / QUIMICA Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Adv Mater Asunto de la revista: BIOFISICA / QUIMICA Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos
...