Your browser doesn't support javascript.
loading
Tension Causes Unfolding of Intracellular Vimentin Intermediate Filaments.
Fleissner, Frederik; Kumar, Sachin; Klein, Noreen; Wirth, Daniel; Dhiman, Ravi; Schneider, Dirk; Bonn, Mischa; Parekh, Sapun H.
Afiliación
  • Fleissner F; Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Mainz, 55128, Germany.
  • Kumar S; Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Mainz, 55128, Germany.
  • Klein N; Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA.
  • Wirth D; Institute of Pharmacy and Biochemistry, Johannes Gutenberg-University, Mainz, 55128, Germany.
  • Dhiman R; Institute of Pharmacy and Biochemistry, Johannes Gutenberg-University, Mainz, 55128, Germany.
  • Schneider D; Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Mainz, 55128, Germany.
  • Bonn M; Institute of Pharmacy and Biochemistry, Johannes Gutenberg-University, Mainz, 55128, Germany.
  • Parekh SH; Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Mainz, 55128, Germany.
Adv Biosyst ; 4(11): e2000111, 2020 11.
Article en En | MEDLINE | ID: mdl-33135378
Intermediate filament (IF) proteins are a class of proteins that constitute different filamentous structures in mammalian cells. As such, IF proteins are part of the load-bearing cytoskeleton and support the nuclear envelope. Molecular dynamics simulations show that IF proteins undergo secondary structural changes to compensate mechanical loads, which is confirmed by experimental in vitro studies on IF hydrogels. However, the structural response of intracellular IF to mechanical load is yet to be elucidated in cellulo. Here, in situ nonlinear Raman imaging combined with multivariate data analysis is used to quantify the intracellular secondary structure of the IF cytoskeletal protein vimentin under different states of cellular tension. It is found that cells under native cellular tension contain more unfolded vimentin than chemically or physically relaxed specimens. This indicates that the unfolding of IF proteins occurs intracellularly when sufficient forces are applied, suggesting that IF structures act as local force sensors in the cell to mark locations under large mechanical tension.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Vimentina / Desplegamiento Proteico Tipo de estudio: Etiology_studies Límite: Humans Idioma: En Revista: Adv Biosyst Año: 2020 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Vimentina / Desplegamiento Proteico Tipo de estudio: Etiology_studies Límite: Humans Idioma: En Revista: Adv Biosyst Año: 2020 Tipo del documento: Article País de afiliación: Alemania
...