Your browser doesn't support javascript.
loading
Sub-nanoliter metabolomics via mass spectrometry to characterize volume-limited samples.
Li, Yafeng; Bouza, Marcos; Wu, Changsheng; Guo, Hengyu; Huang, Danning; Doron, Gilad; Temenoff, Johnna S; Stecenko, Arlene A; Wang, Zhong Lin; Fernández, Facundo M.
Afiliación
  • Li Y; School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
  • Bouza M; School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
  • Wu C; School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
  • Guo H; School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
  • Huang D; School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
  • Doron G; W.H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA.
  • Temenoff JS; W.H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA.
  • Stecenko AA; Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
  • Wang ZL; Emory + Children's Center for Cystic Fibrosis and Airways Disease Research and Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA.
  • Fernández FM; School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
Nat Commun ; 11(1): 5625, 2020 11 06.
Article en En | MEDLINE | ID: mdl-33159052
ABSTRACT
The human metabolome provides a window into the mechanisms and biomarkers of various diseases. However, because of limited availability, many sample types are still difficult to study by metabolomic analyses. Here, we present a mass spectrometry (MS)-based metabolomics strategy that only consumes sub-nanoliter sample volumes. The approach consists of combining a customized metabolomics workflow with a pulsed MS ion generation method, known as triboelectric nanogenerator inductive nanoelectrospray ionization (TENGi nanoESI) MS. Samples tested with this approach include exhaled breath condensate collected from cystic fibrosis patients as well as in vitro-cultured human mesenchymal stromal cells. Both test samples are only available in minimum amounts. Experiments show that picoliter-volume spray pulses suffice to generate high-quality spectral fingerprints, which increase the information density produced per unit sample volume. This TENGi nanoESI strategy has the potential to fill in the gap in metabolomics where liquid chromatography-MS-based analyses cannot be applied. Our method opens up avenues for future investigations into understanding metabolic changes caused by diseases or external stimuli.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Espectrometría de Masas / Fibrosis Quística / Metabolómica Tipo de estudio: Evaluation_studies / Prognostic_studies Límite: Humans Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Espectrometría de Masas / Fibrosis Quística / Metabolómica Tipo de estudio: Evaluation_studies / Prognostic_studies Límite: Humans Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos
...