Your browser doesn't support javascript.
loading
Increased neuronal activity in motor cortex reveals prominent calcium dyshomeostasis in tauopathy mice.
Wu, Qian; Bai, Yang; Li, Wei; Congdon, Erin E; Liu, Wenke; Lin, Yan; Ji, Changyi; Gan, Wen-Biao; Sigurdsson, Einar M.
Afiliación
  • Wu Q; New York University Grossman School of Medicine, Department of Neuroscience and Physiology, Science Building, 435 East 30th Street, New York, NY 10016, United States of America; New York University Grossman School of Medicine, Neuroscience Institute, Science Building, 435 East 30th Street, New York,
  • Bai Y; New York University Grossman School of Medicine, Department of Neuroscience and Physiology, Science Building, 435 East 30th Street, New York, NY 10016, United States of America; New York University Grossman School of Medicine, Neuroscience Institute, Science Building, 435 East 30th Street, New York,
  • Li W; New York University Grossman School of Medicine, Department of Neuroscience and Physiology, Science Building, 435 East 30th Street, New York, NY 10016, United States of America; New York University Grossman School of Medicine, Neuroscience Institute, Science Building, 435 East 30th Street, New York,
  • Congdon EE; New York University Grossman School of Medicine, Department of Neuroscience and Physiology, Science Building, 435 East 30th Street, New York, NY 10016, United States of America; New York University Grossman School of Medicine, Neuroscience Institute, Science Building, 435 East 30th Street, New York,
  • Liu W; New York University Grossman School of Medicine, Department of Psychiatry, 550 First Avenue, New York, NY 10016, United States of America. Electronic address: Wenke.Liu@nyumc.org.
  • Lin Y; New York University Grossman School of Medicine, Department of Neuroscience and Physiology, Science Building, 435 East 30th Street, New York, NY 10016, United States of America; New York University Grossman School of Medicine, Neuroscience Institute, Science Building, 435 East 30th Street, New York,
  • Ji C; New York University Grossman School of Medicine, Department of Neuroscience and Physiology, Science Building, 435 East 30th Street, New York, NY 10016, United States of America; New York University Grossman School of Medicine, Neuroscience Institute, Science Building, 435 East 30th Street, New York,
  • Gan WB; New York University Grossman School of Medicine, Department of Neuroscience and Physiology, Science Building, 435 East 30th Street, New York, NY 10016, United States of America; New York University Grossman School of Medicine, Neuroscience Institute, Science Building, 435 East 30th Street, New York,
  • Sigurdsson EM; New York University Grossman School of Medicine, Department of Neuroscience and Physiology, Science Building, 435 East 30th Street, New York, NY 10016, United States of America; New York University Grossman School of Medicine, Neuroscience Institute, Science Building, 435 East 30th Street, New York,
Neurobiol Dis ; 147: 105165, 2021 01.
Article en En | MEDLINE | ID: mdl-33166699
ABSTRACT
Perturbed neuronal Ca2+ homeostasis is implicated in Alzheimer's disease, which has primarily been demonstrated in mice with amyloid-ß deposits but to a lesser and more variable extent in tauopathy models. In this study, we injected AAV to express Ca2+ indicator in layer II/III motor cortex neurons and measured neuronal Ca2+ activity by two photon imaging in awake transgenic JNPL3 tauopathy and wild-type mice. Various biochemical measurements were conducted in postmortem mouse brains for mechanistic insight and a group of animals received two intravenous injections of a tau monoclonal antibody spaced by four days to test whether the Ca2+ dyshomeostasis was related to pathological tau protein. Under running conditions, we found abnormal neuronal Ca2+ activity in tauopathy mice compared to age-matched wild-type mice with higher frequency of Ca2+ transients, lower amplitude of peak Ca2+ transients and lower total Ca2+ activity in layer II/III motor cortex neurons. While at resting conditions, only Ca2+ frequency was increased. Brain levels of soluble pathological tau correlated better than insoluble tau levels with the degree of Ca2+ dysfunction in tauopathy mice. Furthermore, tau monoclonal antibody 4E6 partially rescued Ca2+ activity abnormalities in tauopathy mice after two intravenous injections and decreased soluble pathological tau protein within the brain. This correlation and antibody effects strongly suggest that the neuronal Ca2+ dyshomeostasis is causally linked to pathological tau protein. These findings also reveal more pronounced neuronal Ca2+ dysregulation in tauopathy mice than previously reported by two-photon imaging that can be partially corrected with an acute tau antibody treatment.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Calcio / Tauopatías / Corteza Motora / Neuronas Tipo de estudio: Prognostic_studies Límite: Animals / Humans Idioma: En Revista: Neurobiol Dis Asunto de la revista: NEUROLOGIA Año: 2021 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Calcio / Tauopatías / Corteza Motora / Neuronas Tipo de estudio: Prognostic_studies Límite: Animals / Humans Idioma: En Revista: Neurobiol Dis Asunto de la revista: NEUROLOGIA Año: 2021 Tipo del documento: Article
...