Your browser doesn't support javascript.
loading
Wavelength-Gated Adaptation of Hydrogel Properties via Photo-Dynamic Multivalency in Associative Star Polymers.
Ludwanowski, Simon; Skarsetz, Oliver; Creusen, Guido; Hoenders, Daniel; Straub, Paula; Walther, Andreas.
Afiliación
  • Ludwanowski S; A3BMS Lab-Active, Adaptive and Autonomous Bioinspired Materials, Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Straße 31, 79104, Freiburg, Germany.
  • Skarsetz O; Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Straße 21, 79104, Freiburg, Germany.
  • Creusen G; Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg, Germany.
  • Hoenders D; A3BMS Lab-Active, Adaptive and Autonomous Bioinspired Materials, Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Straße 31, 79104, Freiburg, Germany.
  • Straub P; Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Straße 21, 79104, Freiburg, Germany.
  • Walther A; Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg, Germany.
Angew Chem Int Ed Engl ; 60(8): 4358-4367, 2021 02 19.
Article en En | MEDLINE | ID: mdl-33180989
ABSTRACT
Responsive materials, such as switchable hydrogels, have been largely engineered for maximum changes between two states. In contrast, adaptive systems target distinct functional plateaus between these maxima. Here, we demonstrate how the photostationary state (PSS) of an E/Z-arylazopyrazole photoswitch can be tuned by the incident wavelength across a wide color spectrum, and how this behavior can be exploited to engineer the photo-dynamic mechanical properties of hydrogels based on multivalent photoswitchable interactions. We show that these hydrogels adapt to the wavelength-dependent PSS and the number of arylazopyrazole units by programmable relationships. Hence, our material design enables the facile adjustment of the mechanical properties without laborious synthetic efforts. The concept goes beyond the classical switching from state A to B, and demonstrates pathways for a truly wavelength-gated adaptation of hydrogel properties potentially useful to engineer cell fate or in soft robotics.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Risk_factors_studies Idioma: En Revista: Angew Chem Int Ed Engl Año: 2021 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Risk_factors_studies Idioma: En Revista: Angew Chem Int Ed Engl Año: 2021 Tipo del documento: Article País de afiliación: Alemania
...