Chlorinated Ethene Degradation Rate Coefficients Simulated with Intact Sandstone Core Microcosms.
Environ Sci Technol
; 54(24): 15829-15839, 2020 12 15.
Article
en En
| MEDLINE
| ID: mdl-33210923
Abiotic transformation of trichloroethene (TCE) in fractured porous rock such as sandstone is challenging to characterize and quantify. The objective of this study was to estimate the pseudo first-order abiotic reaction rate coefficients in diffusion-dominated intact core microcosms. The microcosms imitated clean flow through a fracture next to a contaminated rock matrix by exchanging uncontaminated groundwater, unamended or lactate-amended, in a chamber above a TCE-infused sandstone core. Rate coefficients were assessed using a numerical model of the microcosms that were calibrated to monitoring data. Average initial rate coefficients for complete dechlorination of TCE to acetylene, ethene, and ethane were estimated as 0.019 y-1 in unamended microcosms and 0.024 y-1 in lactate-amended microcosms. Moderately higher values (0.026 y-1 for unamended and 0.035 y-1 for lactate-amended) were obtained based on 13C enrichment data. Abiotic transformation rate coefficients based on gas formation were decreased in unamended microcosms after â¼25 days, to an average of 0.0008 y-1. This was presumably due to depletion of reductive capacity (average values of 0.12 ± 0.10 µeeq/g iron and 18 ± 15 µeeq/g extractable iron). Model-derived rate coefficients and reductive capacities for the intact core microcosms aligned well with results from a previous microcosm study using crushed sandstone from the same site.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Contexto en salud:
12_ODS3_hazardous_contamination
Problema de salud:
12_water_sanitation_hygiene
Asunto principal:
Tricloroetileno
/
Contaminantes Químicos del Agua
/
Agua Subterránea
Idioma:
En
Revista:
Environ Sci Technol
Año:
2020
Tipo del documento:
Article
País de afiliación:
Estados Unidos