Your browser doesn't support javascript.
loading
Generative Embeddings of Brain Collective Dynamics Using Variational Autoencoders.
Perl, Yonatan Sanz; Bocaccio, Hernán; Pérez-Ipiña, Ignacio; Zamberlán, Federico; Piccinini, Juan; Laufs, Helmut; Kringelbach, Morten; Deco, Gustavo; Tagliazucchi, Enzo.
Afiliación
  • Perl YS; Universidad de San Andrés, Buenos Aires 1644, Argentina.
  • Bocaccio H; Physics Department, University of Buenos Aires and Buenos Aires Physics Institute, Buenos Aires 1428, Argentina.
  • Pérez-Ipiña I; Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona 08002, Spain.
  • Zamberlán F; Physics Department, University of Buenos Aires and Buenos Aires Physics Institute, Buenos Aires 1428, Argentina.
  • Piccinini J; Physics Department, University of Buenos Aires and Buenos Aires Physics Institute, Buenos Aires 1428, Argentina.
  • Laufs H; Physics Department, University of Buenos Aires and Buenos Aires Physics Institute, Buenos Aires 1428, Argentina.
  • Kringelbach M; Physics Department, University of Buenos Aires and Buenos Aires Physics Institute, Buenos Aires 1428, Argentina.
  • Deco G; Department of Neurology, Christian-Albrechts-University Kiel, Kiel 24118, Germany.
  • Tagliazucchi E; Department of Psychiatry, University of Oxford, Oxford 2JD, United Kingdom.
Phys Rev Lett ; 125(23): 238101, 2020 Dec 04.
Article en En | MEDLINE | ID: mdl-33337222
We consider the problem of encoding pairwise correlations between coupled dynamical systems in a low-dimensional latent space based on few distinct observations. We use variational autoencoders (VAEs) to embed temporal correlations between coupled nonlinear oscillators that model brain states in the wake-sleep cycle into a two-dimensional manifold. Training a VAE with samples generated using two different parameter combinations results in an embedding that encodes the repertoire of collective dynamics, as well as the topology of the underlying connectivity network. We first follow this approach to infer the trajectory of brain states measured from wakefulness to deep sleep from the two end points of this trajectory; then, we show that the same architecture was capable of representing the pairwise correlations of generic Landau-Stuart oscillators coupled by complex network topology.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Encéfalo / Modelos Neurológicos Límite: Humans Idioma: En Revista: Phys Rev Lett Año: 2020 Tipo del documento: Article País de afiliación: Argentina

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Encéfalo / Modelos Neurológicos Límite: Humans Idioma: En Revista: Phys Rev Lett Año: 2020 Tipo del documento: Article País de afiliación: Argentina
...