Your browser doesn't support javascript.
loading
Cognitive impact of COVID-19: looking beyond the short term.
Miners, Scott; Kehoe, Patrick G; Love, Seth.
Afiliación
  • Miners S; Dementia Research Group, Bristol Medical School (THS), University of Bristol, Learning & Research level 1, Southmead Hospital, Bristol, BS10 5NB, UK. scott.miners@bristol.ac.uk.
  • Kehoe PG; Dementia Research Group, Bristol Medical School (THS), University of Bristol, Learning & Research level 1, Southmead Hospital, Bristol, BS10 5NB, UK.
  • Love S; Dementia Research Group, Bristol Medical School (THS), University of Bristol, Learning & Research level 1, Southmead Hospital, Bristol, BS10 5NB, UK. seth.love@bristol.ac.uk.
Alzheimers Res Ther ; 12(1): 170, 2020 12 30.
Article en En | MEDLINE | ID: mdl-33380345
ABSTRACT
COVID-19 is primarily a respiratory disease but up to two thirds of hospitalised patients show evidence of central nervous system (CNS) damage, predominantly ischaemic, in some cases haemorrhagic and occasionally encephalitic. It is unclear how much of the ischaemic damage is mediated by direct or inflammatory effects of virus on the CNS vasculature and how much is secondary to extracranial cardiorespiratory disease. Limited data suggest that the causative SARS-CoV-2 virus may enter the CNS via the nasal mucosa and olfactory fibres, or by haematogenous spread, and is capable of infecting endothelial cells, pericytes and probably neurons. Extracranially, SARS-CoV-2 targets endothelial cells and pericytes, causing endothelial cell dysfunction, vascular leakage and immune activation, sometimes leading to disseminated intravascular coagulation. It remains to be confirmed whether endothelial cells and pericytes in the cerebral vasculature are similarly targeted. Several aspects of COVID-19 are likely to impact on cognition. Cerebral white matter is particularly vulnerable to ischaemic damage in COVID-19 and is also critically important for cognitive function. There is accumulating evidence that cerebral hypoperfusion accelerates amyloid-ß (Aß) accumulation and is linked to tau and TDP-43 pathology, and by inducing phosphorylation of α-synuclein at serine-129, ischaemia may also increase the risk of development of Lewy body disease. Current therapies for COVID-19 are understandably focused on supporting respiratory function, preventing thrombosis and reducing immune activation. Since angiotensin-converting enzyme (ACE)-2 is a receptor for SARS-CoV-2, and ACE inhibitors and angiotensin receptor blockers are predicted to increase ACE-2 expression, it was initially feared that their use might exacerbate COVID-19. Recent meta-analyses have instead suggested that these medications are protective. This is perhaps because SARS-CoV-2 entry may deplete ACE-2, tipping the balance towards angiotensin II-ACE-1-mediated classical RAS activation exacerbating hypoperfusion and promoting inflammation. It may be relevant that APOE ε4 individuals, who seem to be at increased risk of COVID-19, also have lowest ACE-2 activity. COVID-19 is likely to leave an unexpected legacy of long-term neurological complications in a significant number of survivors. Cognitive follow-up of COVID-19 patients will be important, especially in patients who develop cerebrovascular and neurological complications during the acute illness.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Contexto en salud: 4_TD Problema de salud: 4_pneumonia Asunto principal: Encefalopatías / Trastornos del Conocimiento / COVID-19 Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Alzheimers Res Ther Año: 2020 Tipo del documento: Article País de afiliación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Contexto en salud: 4_TD Problema de salud: 4_pneumonia Asunto principal: Encefalopatías / Trastornos del Conocimiento / COVID-19 Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Alzheimers Res Ther Año: 2020 Tipo del documento: Article País de afiliación: Reino Unido
...