Your browser doesn't support javascript.
loading
Locating transcription factor binding sites by fully convolutional neural network.
Zhang, Qinhu; Wang, Siguo; Chen, Zhanheng; He, Ying; Liu, Qi; Huang, De-Shuang.
Afiliación
  • Zhang Q; Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University, Shanghai, China.
  • Wang S; Computer Science and Technology, Tongji University, China.
  • Chen Z; University of Chinese Academy of Sciences, China.
  • He Y; Computer Science and Technology at Tongji University, China.
  • Liu Q; Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, China.
  • Huang DS; Institute of Machines Learning and Systems Biology, Tongji University, China.
Brief Bioinform ; 22(5)2021 09 02.
Article en En | MEDLINE | ID: mdl-33498086
Transcription factors (TFs) play an important role in regulating gene expression, thus identification of the regions bound by them has become a fundamental step for molecular and cellular biology. In recent years, an increasing number of deep learning (DL) based methods have been proposed for predicting TF binding sites (TFBSs) and achieved impressive prediction performance. However, these methods mainly focus on predicting the sequence specificity of TF-DNA binding, which is equivalent to a sequence-level binary classification task, and fail to identify motifs and TFBSs accurately. In this paper, we developed a fully convolutional network coupled with global average pooling (FCNA), which by contrast is equivalent to a nucleotide-level binary classification task, to roughly locate TFBSs and accurately identify motifs. Experimental results on human ChIP-seq datasets show that FCNA outperforms other competing methods significantly. Besides, we find that the regions located by FCNA can be used by motif discovery tools to further refine the prediction performance. Furthermore, we observe that FCNA can accurately identify TF-DNA binding motifs across different cell lines and infer indirect TF-DNA bindings.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Factores de Transcripción / Redes Neurales de la Computación / Análisis de Secuencia de ADN / Elementos de Respuesta / Análisis de Secuencia de Proteína / Secuenciación de Inmunoprecipitación de Cromatina Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Brief Bioinform Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2021 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Factores de Transcripción / Redes Neurales de la Computación / Análisis de Secuencia de ADN / Elementos de Respuesta / Análisis de Secuencia de Proteína / Secuenciación de Inmunoprecipitación de Cromatina Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Brief Bioinform Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2021 Tipo del documento: Article País de afiliación: China
...