Your browser doesn't support javascript.
loading
Viscoelasticity of biomolecular condensates conforms to the Jeffreys model.
Zhou, Huan-Xiang.
Afiliación
  • Zhou HX; Department of Chemistry and Department of Physics, University of Illinois at Chicago, Chicago, Illinois 60607, USA.
J Chem Phys ; 154(4): 041103, 2021 Jan 28.
Article en En | MEDLINE | ID: mdl-33514117
Biomolecular condensates, largely by virtue of their material properties, are revolutionizing biology, and yet, the physical understanding of these properties is lagging. Here, I show that the viscoelasticity of condensates can be captured by a simple model, comprising a component where shear relaxation is an exponential function (with time constant τ1) and a component with nearly instantaneous shear relaxation (time constant τ0 → 0). Modulation of intermolecular interactions, e.g., by adding salt, can disparately affect the two components such that the τ1 component may dominate at low salt, whereas the τ0 component may dominate at high salt. Condensates have a tendency to fuse, with the dynamics accelerated by interfacial tension and impeded by viscosity. For fast-fusion condensates, shear relaxation on the τ1 timescale may become rate-limiting such that the fusion speed is no longer in direction proportion to the interfacial tension. These insights help narrow the gap in understanding between the biology and physics of biomolecular condensates.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Proteínas de Unión al ARN / Proteínas de Caenorhabditis elegans / Modelos Químicos Límite: Animals Idioma: En Revista: J Chem Phys Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Proteínas de Unión al ARN / Proteínas de Caenorhabditis elegans / Modelos Químicos Límite: Animals Idioma: En Revista: J Chem Phys Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos
...