Your browser doesn't support javascript.
loading
A modular approach to integrating multiple data sources into real-time clinical prediction for pediatric diarrhea.
Brintz, Ben J; Haaland, Benjamin; Howard, Joel; Chao, Dennis L; Proctor, Joshua L; Khan, Ashraful I; Ahmed, Sharia M; Keegan, Lindsay T; Greene, Tom; Keita, Adama Mamby; Kotloff, Karen L; Platts-Mills, James A; Nelson, Eric J; Levine, Adam C; Pavia, Andrew T; Leung, Daniel T.
Afiliación
  • Brintz BJ; Division of Epidemiology, Department of Internal Medicine, University of Utah, Salt Lake City, United States.
  • Haaland B; Division of Infectious Diseases, Department of Internal Medicine, University of Utah, Salt Lake City, United States.
  • Howard J; Population Health Sciences, University of Utah, Salt Lake City, United States.
  • Chao DL; Division of Pediatric Infectious Diseases, University of Utah, Salt Lake City, United States.
  • Proctor JL; Institute of Disease Modeling, Bill and Melinda Gates Foundation, Seattle, United States.
  • Khan AI; Institute of Disease Modeling, Bill and Melinda Gates Foundation, Seattle, United States.
  • Ahmed SM; International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh.
  • Keegan LT; Division of Infectious Diseases, Department of Internal Medicine, University of Utah, Salt Lake City, United States.
  • Greene T; Division of Epidemiology, Department of Internal Medicine, University of Utah, Salt Lake City, United States.
  • Keita AM; Division of Epidemiology, Department of Internal Medicine, University of Utah, Salt Lake City, United States.
  • Kotloff KL; Centre Pour le Développement des Vaccins-Mali, Bamako, Mali.
  • Platts-Mills JA; Division of Infectious Disease and Tropical Pediatrics, University of Maryland, Baltimore, United States.
  • Nelson EJ; Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, United States.
  • Levine AC; Departments of Pediatrics, University of Florida, Gainesville, United States.
  • Pavia AT; Departments of Environmental and Global Health, University of Florida, Gainesville, United States.
  • Leung DT; Department of Emergency Medicine, Brown University, Providence, United States.
Elife ; 102021 02 02.
Article en En | MEDLINE | ID: mdl-33527894
Traditional clinical prediction models focus on parameters of the individual patient. For infectious diseases, sources external to the patient, including characteristics of prior patients and seasonal factors, may improve predictive performance. We describe the development of a predictive model that integrates multiple sources of data in a principled statistical framework using a post-test odds formulation. Our method enables electronic real-time updating and flexibility, such that components can be included or excluded according to data availability. We apply this method to the prediction of etiology of pediatric diarrhea, where 'pre-test' epidemiologic data may be highly informative. Diarrhea has a high burden in low-resource settings, and antibiotics are often over-prescribed. We demonstrate that our integrative method outperforms traditional prediction in accurately identifying cases with a viral etiology, and show that its clinical application, especially when used with an additional diagnostic test, could result in a 61% reduction in inappropriately prescribed antibiotics.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Contexto en salud: 2_ODS3 / 3_ND Problema de salud: 2_cobertura_universal / 2_enfermedades_transmissibles / 3_diarrhea / 3_neglected_diseases / 3_zoonosis Asunto principal: Sistemas de Apoyo a Decisiones Clínicas / Diarrea Tipo de estudio: Diagnostic_studies / Prognostic_studies / Risk_factors_studies Límite: Child / Humans Idioma: En Revista: Elife Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Contexto en salud: 2_ODS3 / 3_ND Problema de salud: 2_cobertura_universal / 2_enfermedades_transmissibles / 3_diarrhea / 3_neglected_diseases / 3_zoonosis Asunto principal: Sistemas de Apoyo a Decisiones Clínicas / Diarrea Tipo de estudio: Diagnostic_studies / Prognostic_studies / Risk_factors_studies Límite: Child / Humans Idioma: En Revista: Elife Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos
...