Your browser doesn't support javascript.
loading
Uncertainty quantification in the radiogenomics modeling of EGFR amplification in glioblastoma.
Hu, Leland S; Wang, Lujia; Hawkins-Daarud, Andrea; Eschbacher, Jennifer M; Singleton, Kyle W; Jackson, Pamela R; Clark-Swanson, Kamala; Sereduk, Christopher P; Peng, Sen; Wang, Panwen; Wang, Junwen; Baxter, Leslie C; Smith, Kris A; Mazza, Gina L; Stokes, Ashley M; Bendok, Bernard R; Zimmerman, Richard S; Krishna, Chandan; Porter, Alyx B; Mrugala, Maciej M; Hoxworth, Joseph M; Wu, Teresa; Tran, Nhan L; Swanson, Kristin R; Li, Jing.
Afiliación
  • Hu LS; Department of Radiology, Mayo Clinic Arizona, 5777 E. Mayo Blvd, Phoenix, AZ, 85054, USA. hu.leland@mayo.edu.
  • Wang L; School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, 699 S Mill Ave, Tempe, AZ, 85281, USA. hu.leland@mayo.edu.
  • Hawkins-Daarud A; Mathematical NeuroOncology Lab, Precision Neurotherapeutics Innovation Program, Mayo Clinic Arizona, 5777 East Mayo Blvd, Support Services Building Suite 2-700, Phoenix, AZ, 85054, USA. hu.leland@mayo.edu.
  • Eschbacher JM; Department of Radiology, Mayo Clinic Arizona, 5777 E. Mayo Blvd, Phoenix, AZ, 85054, USA.
  • Singleton KW; School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, 699 S Mill Ave, Tempe, AZ, 85281, USA.
  • Jackson PR; Mathematical NeuroOncology Lab, Precision Neurotherapeutics Innovation Program, Mayo Clinic Arizona, 5777 East Mayo Blvd, Support Services Building Suite 2-700, Phoenix, AZ, 85054, USA.
  • Clark-Swanson K; Mathematical NeuroOncology Lab, Precision Neurotherapeutics Innovation Program, Mayo Clinic Arizona, 5777 East Mayo Blvd, Support Services Building Suite 2-700, Phoenix, AZ, 85054, USA.
  • Sereduk CP; Department of Pathology, Barrow Neurological Institute-St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA.
  • Peng S; Mathematical NeuroOncology Lab, Precision Neurotherapeutics Innovation Program, Mayo Clinic Arizona, 5777 East Mayo Blvd, Support Services Building Suite 2-700, Phoenix, AZ, 85054, USA.
  • Wang P; Mathematical NeuroOncology Lab, Precision Neurotherapeutics Innovation Program, Mayo Clinic Arizona, 5777 East Mayo Blvd, Support Services Building Suite 2-700, Phoenix, AZ, 85054, USA.
  • Wang J; Mathematical NeuroOncology Lab, Precision Neurotherapeutics Innovation Program, Mayo Clinic Arizona, 5777 East Mayo Blvd, Support Services Building Suite 2-700, Phoenix, AZ, 85054, USA.
  • Baxter LC; Department of Neurosurgery, Mayo Clinic Arizona, 5777 E. Mayo Blvd, Phoenix, AZ, 85054, USA.
  • Smith KA; Department of Cancer Biology, Mayo Clinic Arizona, 5777 E. Mayo Blvd, Phoenix, AZ, 85054, USA.
  • Mazza GL; Cancer and Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ, 85004, USA.
  • Stokes AM; Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic Arizona, Scottsdale, AZ, 85259, USA.
  • Bendok BR; Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic Arizona, Scottsdale, AZ, 85259, USA.
  • Zimmerman RS; Department of Neuropsychology, Mayo Clinic Arizona, 5777 E. Mayo Blvd, Phoenix, AZ, 85054, USA.
  • Krishna C; Department of Neurosurgery, Barrow Neurological Institute-St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA.
  • Porter AB; Department of Quantitative Health Sciences, Mayo Clinic Arizona, Scottsdale, AZ, 85259, USA.
  • Mrugala MM; Department of Imaging Research, Barrow Neurological Institute-St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA.
  • Hoxworth JM; Department of Neurosurgery, Mayo Clinic Arizona, 5777 E. Mayo Blvd, Phoenix, AZ, 85054, USA.
  • Wu T; Department of Neurosurgery, Mayo Clinic Arizona, 5777 E. Mayo Blvd, Phoenix, AZ, 85054, USA.
  • Tran NL; Department of Neurosurgery, Mayo Clinic Arizona, 5777 E. Mayo Blvd, Phoenix, AZ, 85054, USA.
  • Swanson KR; Department of Neuro-Oncology, Mayo Clinic Arizona, 5777 E. Mayo Blvd, Phoenix, AZ, 85054, USA.
  • Li J; Department of Neuro-Oncology, Mayo Clinic Arizona, 5777 E. Mayo Blvd, Phoenix, AZ, 85054, USA.
Sci Rep ; 11(1): 3932, 2021 02 16.
Article en En | MEDLINE | ID: mdl-33594116
Radiogenomics uses machine-learning (ML) to directly connect the morphologic and physiological appearance of tumors on clinical imaging with underlying genomic features. Despite extensive growth in the area of radiogenomics across many cancers, and its potential role in advancing clinical decision making, no published studies have directly addressed uncertainty in these model predictions. We developed a radiogenomics ML model to quantify uncertainty using transductive Gaussian Processes (GP) and a unique dataset of 95 image-localized biopsies with spatially matched MRI from 25 untreated Glioblastoma (GBM) patients. The model generated predictions for regional EGFR amplification status (a common and important target in GBM) to resolve the intratumoral genetic heterogeneity across each individual tumor-a key factor for future personalized therapeutic paradigms. The model used probability distributions for each sample prediction to quantify uncertainty, and used transductive learning to reduce the overall uncertainty. We compared predictive accuracy and uncertainty of the transductive learning GP model against a standard GP model using leave-one-patient-out cross validation. Additionally, we used a separate dataset containing 24 image-localized biopsies from 7 high-grade glioma patients to validate the model. Predictive uncertainty informed the likelihood of achieving an accurate sample prediction. When stratifying predictions based on uncertainty, we observed substantially higher performance in the group cohort (75% accuracy, n = 95) and amongst sample predictions with the lowest uncertainty (83% accuracy, n = 72) compared to predictions with higher uncertainty (48% accuracy, n = 23), due largely to data interpolation (rather than extrapolation). On the separate validation set, our model achieved 78% accuracy amongst the sample predictions with lowest uncertainty. We present a novel approach to quantify radiogenomics uncertainty to enhance model performance and clinical interpretability. This should help integrate more reliable radiogenomics models for improved medical decision-making.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Glioblastoma / Genes erbB-1 / Modelación Específica para el Paciente / Aprendizaje Automático / Genómica de Imágenes Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Sci Rep Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Glioblastoma / Genes erbB-1 / Modelación Específica para el Paciente / Aprendizaje Automático / Genómica de Imágenes Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Sci Rep Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos
...