Your browser doesn't support javascript.
loading
Many-Body Chern Number from Statistical Correlations of Randomized Measurements.
Cian, Ze-Pei; Dehghani, Hossein; Elben, Andreas; Vermersch, Benoît; Zhu, Guanyu; Barkeshli, Maissam; Zoller, Peter; Hafezi, Mohammad.
Afiliación
  • Cian ZP; Joint Quantum Institute, College Park, Maryland 20742, USA.
  • Dehghani H; The Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742, USA.
  • Elben A; Joint Quantum Institute, College Park, Maryland 20742, USA.
  • Vermersch B; The Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742, USA.
  • Zhu G; Center for Quantum Physics, University of Innsbruck, Innsbruck A-6020, Austria.
  • Barkeshli M; Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, Innsbruck A-6020, Austria.
  • Zoller P; Center for Quantum Physics, University of Innsbruck, Innsbruck A-6020, Austria.
  • Hafezi M; Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, Innsbruck A-6020, Austria.
Phys Rev Lett ; 126(5): 050501, 2021 Feb 05.
Article en En | MEDLINE | ID: mdl-33605765
ABSTRACT
One of the main topological invariants that characterizes several topologically ordered phases is the many-body Chern number (MBCN). Paradigmatic examples include several fractional quantum Hall phases, which are expected to be realized in different atomic and photonic quantum platforms in the near future. Experimental measurement and numerical computation of this invariant are conventionally based on the linear-response techniques that require having access to a family of states, as a function of an external parameter, which is not suitable for many quantum simulators. Here, we propose an ancilla-free experimental scheme for the measurement of this invariant, without requiring any knowledge of the Hamiltonian. Specifically, we use the statistical correlations of randomized measurements to infer the MBCN of a wave function. Remarkably, our results apply to disklike geometries that are more amenable to current quantum simulator architectures.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Clinical_trials Idioma: En Revista: Phys Rev Lett Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Clinical_trials Idioma: En Revista: Phys Rev Lett Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos
...