Your browser doesn't support javascript.
loading
A multiscale model via single-cell transcriptomics reveals robust patterning mechanisms during early mammalian embryo development.
Cang, Zixuan; Wang, Yangyang; Wang, Qixuan; Cho, Ken W Y; Holmes, William; Nie, Qing.
Afiliación
  • Cang Z; Department of Mathematics, The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, California, United States of America.
  • Wang Y; Department of Mathematics, The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, California, United States of America.
  • Wang Q; Department of Mathematics, University of California, Riverside, Riverside, California, United States of America.
  • Cho KWY; Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California, United States of America.
  • Holmes W; Department of Physics and Astronomy, Department of Mathematics, Quantitative Systems Biology Center, Vanderbilt University, Nashville, Tennessee, United States of America.
  • Nie Q; Department of Mathematics, The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, California, United States of America.
PLoS Comput Biol ; 17(3): e1008571, 2021 03.
Article en En | MEDLINE | ID: mdl-33684098
ABSTRACT
During early mammalian embryo development, a small number of cells make robust fate decisions at particular spatial locations in a tight time window to form inner cell mass (ICM), and later epiblast (Epi) and primitive endoderm (PE). While recent single-cell transcriptomics data allows scrutinization of heterogeneity of individual cells, consistent spatial and temporal mechanisms the early embryo utilize to robustly form the Epi/PE layers from ICM remain elusive. Here we build a multiscale three-dimensional model for mammalian embryo to recapitulate the observed patterning process from zygote to late blastocyst. By integrating the spatiotemporal information reconstructed from multiple single-cell transcriptomic datasets, the data-informed modeling analysis suggests two major processes critical to the formation of Epi/PE layers a selective cell-cell adhesion mechanism (via EphA4/EphrinB2) for fate-location coordination and a temporal attenuation mechanism of cell signaling (via Fgf). Spatial imaging data and distinct subsets of single-cell gene expression data are then used to validate the predictions. Together, our study provides a multiscale framework that incorporates single-cell gene expression datasets to analyze gene regulations, cell-cell communications, and physical interactions among cells in complex geometries at single-cell resolution, with direct application to late-stage development of embryogenesis.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Desarrollo Embrionario / Transcriptoma / Estratos Germinativos / Modelos Biológicos Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: PLoS Comput Biol Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Desarrollo Embrionario / Transcriptoma / Estratos Germinativos / Modelos Biológicos Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: PLoS Comput Biol Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos
...