Ultrasensitive temperature sensor with Vernier-effect improved fiber Michelson interferometer.
Opt Express
; 29(2): 1090-1101, 2021 Jan 18.
Article
en En
| MEDLINE
| ID: mdl-33726331
A novel fiber Michelson interferometer (FMI) based on parallel dual polarization maintaining fiber Sagnac interferometers (PMF-SIs) is proposed and experimentally demonstrated for temperature sensing. The free spectral range (FSR) difference of dual PMF-SIs determines the FSR of envelope and sensitivity of the sensor. The temperature sensitivity of parallel dual PMF-SIs is greatly enhanced by the Vernier effect. Experimental results show that the temperature sensitivity of the proposed sensor is improved from -1.646 nm/°C (single PMF-SI) to 78.984 nm/°C (parallel dual PMF-SIs), with a magnification factor of 47.99, and the temperature resolution is improved from ±0.03037°C to ±0.00063°C by optimizing the FSR difference between the two PMF-SIs. Our proposed ultrasensitive temperature sensor is with easy fabrication, low cost and simple configuration which can be implemented for various real applications that need high precision temperature measurement.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
Opt Express
Asunto de la revista:
OFTALMOLOGIA
Año:
2021
Tipo del documento:
Article