Your browser doesn't support javascript.
loading
Evaluating the endothelial-microglial interaction and comprehensive inflammatory marker profiles under acute exposure to ultrafine diesel exhaust particles in vitro.
Aquino, Grace V; Dabi, Amjad; Odom, Gabriel J; Zhang, Fan; Bruce, Erica D.
Afiliación
  • Aquino GV; Department of Environmental Science, Baylor University, 101 Bagby Ave., Waco, TX, 76706, USA.
  • Dabi A; Department of Environmental Science, Baylor University, 101 Bagby Ave., Waco, TX, 76706, USA.
  • Odom GJ; Department of Biostatistics Stempel College of Public Health, Florida International University, 11200 SW 8(th)Street, AHC4-470, Miami, FL, 33199, USA; Department of Public Health Sciences, University of Miami Miller School of Medicine, The University of Miami, 1600 NW 10th Ave. 1140, Miami, FL, 3313
  • Zhang F; Department of Environmental Science, Baylor University, 101 Bagby Ave., Waco, TX, 76706, USA.
  • Bruce ED; Department of Environmental Science, Baylor University, 101 Bagby Ave., Waco, TX, 76706, USA. Electronic address: erica_bruce@baylor.edu.
Toxicology ; 454: 152748, 2021 04 30.
Article en En | MEDLINE | ID: mdl-33727093
ABSTRACT
Exposure to combustion-derived particulate matter (PM) such as diesel exhaust particles (DEP) is a public health concern because people in urban areas are continuously exposed, and once inhaled, fine and ultrafine DEP may reach the brain. The blood-brain barrier (BBB) endothelial cells (EC) and the perivascular microglia protect the brain from circulating pathogens and neurotoxic molecules like DEP. While the BBB-microglial interaction is critical for maintaining homeostasis, no study has previously evaluated the endothelial-microglial interaction nor comprehensively characterized these cells' inflammatory marker profiles under ultrafine DEP exposures in vitro. Therefore, the goal of this study was to investigate the in vitro rat EC-microglial co-culture under acute (24 h.) exposure to ultrafine DEP (0.002-20 µg/mL), by evaluating key mechanisms associated with PM toxicity lactate dehydrogenase (LDH) leakage, reactive oxygen species (ROS) generation, cell metabolic activity (CMA) changes, and production of 27 inflammatory markers. These parameters were also evaluated in rat microglial and endothelial monocultures to determine whether the EC-microglial co-culture responded differently than the cerebrovasculature and microglia alone. While results indicated that ultrafine DEP exposure caused concentration-dependent increases in LDH leakage and ROS production in all groups, as expected, exposure also caused mixed responses in CMA and atypical cytokine/chemokine profiles in all groups, which was not expected. The inflammation assay results further suggested that the microglia were not classically activated under this exposure scenario, despite previous in vitro studies showing microglial activation (priming) at similar concentrations of ultrafine DEP. Additionally, compared to the cerebrovasculature alone, the EC-microglia interaction in the co-culture did not appear to cause changes in any parameter save in pro-inflammatory marker production, where the interaction appeared to cause an overall downregulation in cytokine/chemokine levels after ultrafine DEP exposure. Finally, to our knowledge, this is the first study to evaluate the influence of microglia on the BBB's ultrafine DEP-induced cytotoxic and inflammatory responses, which are heavily implicated in the pathogenesis of PM-related cerebrovascular dysfunction and neurodegeneration.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Emisiones de Vehículos / Microglía / Células Endoteliales / Material Particulado / Inflamación Límite: Animals Idioma: En Revista: Toxicology Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Emisiones de Vehículos / Microglía / Células Endoteliales / Material Particulado / Inflamación Límite: Animals Idioma: En Revista: Toxicology Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos
...