Your browser doesn't support javascript.
loading
Local Granger causality.
Stramaglia, Sebastiano; Scagliarini, Tomas; Antonacci, Yuri; Faes, Luca.
Afiliación
  • Stramaglia S; Dipartimento Interateneo di Fisica, Universitá degli Studi di Bari Aldo Moro, and INFN, Sezione di Bari, 70126 Bari, Italy.
  • Scagliarini T; Dipartimento Interateneo di Fisica, Universitá degli Studi di Bari Aldo Moro, and INFN, Sezione di Bari, 70126 Bari, Italy.
  • Antonacci Y; Dipartimento di Fisica e Chimica, Universitá di Palermo, 90123 Palermo, Italy.
  • Faes L; Dipartimento di Ingegneria, Universitá di Palermo, 90128 Palermo, Italy.
Phys Rev E ; 103(2): L020102, 2021 Feb.
Article en En | MEDLINE | ID: mdl-33735992
Granger causality (GC) is a statistical notion of causal influence based on prediction via linear vector autoregression. For Gaussian variables it is equivalent to transfer entropy, an information-theoretic measure of time-directed information transfer between jointly dependent processes. We exploit such equivalence and calculate exactly the local Granger causality, i.e., the profile of the information transferred from the driver to the target process at each discrete time point; in this frame, GC is the average of its local version. We show that the variability of the local GC around its mean relates to the interplay between driver and innovation (autoregressive noise) processes, and it may reveal transient instances of information transfer not detectable from its average values. Our approach offers a robust and computationally fast method to follow the information transfer along the time history of linear stochastic processes, as well as of nonlinear complex systems studied in the Gaussian approximation.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Etiology_studies / Prognostic_studies Idioma: En Revista: Phys Rev E Año: 2021 Tipo del documento: Article País de afiliación: Italia

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Etiology_studies / Prognostic_studies Idioma: En Revista: Phys Rev E Año: 2021 Tipo del documento: Article País de afiliación: Italia
...